1.对于函数f(x)定义域中任意的x1,x2(x1≠x2),则当f(x)=2的-x次方时,结论 f([x1+x2]/2)
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 18:57:59
1.对于函数f(x)定义域中任意的x1,x2(x1≠x2),则当f(x)=2的-x次方时,结论 f([x1+x2]/2)0,则1/1-〔a的1/4次方〕+1/1+[a的1/4次方〕+2/1+[a的1/2次方]+4/[1+a]=?
如何计算啊?我就只能化简到8/1-a平方 这一步
如何计算啊?我就只能化简到8/1-a平方 这一步
第一题:
把x1+x2 x1 x2 代入 f(x)=2^(-x),
f([x1+x2]/2)-[f(x1)+f(x2)]/2
=1/{2^[(x1+x2)/2]}
-(2^x1+2^x2)/(2*2^x1*2^x2)
=-[2^x1-2*2^(x1/2)*2^(x2/2)+2^x2]
=-[2^(x2/2)+2^(x1/2)]^2
因为x1≠x2,所以上式恒
把x1+x2 x1 x2 代入 f(x)=2^(-x),
f([x1+x2]/2)-[f(x1)+f(x2)]/2
=1/{2^[(x1+x2)/2]}
-(2^x1+2^x2)/(2*2^x1*2^x2)
=-[2^x1-2*2^(x1/2)*2^(x2/2)+2^x2]
=-[2^(x2/2)+2^(x1/2)]^2
因为x1≠x2,所以上式恒
1.对于函数f(x)定义域中任意的x1,x2(x1≠x2),则当f(x)=2的-x次方时,结论 f([x1+x2]/2)
对于函数f(x)的定义域中任意的x1,x2(x1≠x2),有如下结论(1)f(x1+x2)=f(x1)*f(x2) (2
对于函数f(x)定义域中任意的x1、x2(x1≠x2),有如下结论:(1)f(x1+x2)=f(x1)+f(x2);
对于函数f(x)=lgx定义域中任意X1,X2(X1≠X2)有如下结论
对于函数f(x)的定义域中任意的x1,x2(x1≠x2),有如下结论
对于函数f(x)=lgx定义域中任意x1,x2(x1≠x2)有如下结论:
已知函数y=f(x)对于定义域内的任意实数x1,x2(x1≠x2)都有f(x1)-f(x2)/(x1-x2)>0,
若定义在[-2010,2010]上的函数f(x)满足对于任意 x1,x2,有f(x1+x2)=f(x1)+f(x2)+2
已知函数f(x)=2的X次方,X1,X2是任意实数且X1不等于X2,证明0.5(f(x1)+f(x2))>f((x1+x
设函数f(x)的定义域关于原点对称,且对于定义域内任意x1≠x2有f(x1-x2)=[1+f(x1)+f(x2)]/[f
对于函数f(x)=1/x(x>0)定义域中x1,x2(x1≠x2)有如下结论:
函数f(x),x∈R,若对于任意实数x1,x2都有f(x1+x2)+f(x1-x2)=2f(x1).f(x2),求证f(