ABCD为菱形,∠DAB=60°,PD⊥面ABCD,且PD=AD,则面PAB与面PCD所成的锐二面角的正切值.根号3/2
四边形ABCD为菱形,角DAB=60度,PD垂直面ABCD,且PD=AD,求面PAB与面PCD所成锐二面角的大小.
如图ABCD是正方形,PD⊥面ABCD,PD=DC(1)求证:AC⊥PB;(2)求AD与PB所成角的正切值
如图,PD⊥底面ABCD,ABCD为正方形,AB=2,E是PB的中点,且异面直线DP与AE所成角的余弦值为√3/3.试在
一已知四棱锥P--ABCD的底面是菱形,∠DAB=60°,PD⊥平面ABCD,PD=AD,E为AB的中点,F为PD的中点
如图所示,在四棱锥P-ABCD中 底面ABCD是菱形,∠DAB=60°,PD⊥平面ABCD,PD=AD,点E为BC中点
三角形ABCD是正方形,PD⊥面ABCD,PD=PC,E是PC的中点,证明DE⊥面PBC,求二面角C-PB-D的大小
己知四棱锥P-ABCD,底面ABCD是是菱形,∠DAB=π/3, PD⊥平面ABCD,线段PD=AD,点E是AB的中点,
已知ABCD是矩形,PD⊥面ABCD,PD=DC=a,AD=根号二a,M、N分别是AD、PB的中点,
在四棱锥P-ABCD中,ABCD是边长为a的正方形,侧面PAD⊥面ABCD,且PA=PD=(根号2除以2)乘以AD,若E
PD⊥面ABCD,AD⊥DC,AD‖BC,PD:DC:BC=1:1:√2.(1):求PB与平面PDC所成角的大小.(2)
已知四棱锥P-ABCD的底面是菱形,∠DAB=60o,PD⊥平面ABCD,PD=AD.证明:平面PAC⊥PDB.
四棱锥P-ABCD中,地面ABCD时边长为1的正方形,PA⊥面ABCD ,PA=3,AE⊥PD于E,求AC与面EAB所成