如图,A、B为⊙O上的点,AC是弦,CD是⊙O的切线,C为切点,AD⊥CD于点D,若AC为∠BAD的平分线.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 23:20:41
如图,A、B为⊙O上的点,AC是弦,CD是⊙O的切线,C为切点,AD⊥CD于点D,若AC为∠BAD的平分线.
求证:(1)AB为⊙O的直径;(2)AC2=AB•AD.
求证:(1)AB为⊙O的直径;(2)AC2=AB•AD.
证明:(1)连接BC,
AC平分∠BAD,
∴∠DAC=∠CAB.
又CD切⊙O于点C,
∴∠ACD=∠B(弦切角定理).
∵AD⊥CD,
∴∠ACD+∠DAC=90°.
即∠B+∠CAB=90°,∴∠BCA=90°.
∴AB是⊙O的直径(90°圆周角所对弦是直径).
(2)∵∠ACD=∠B,∠DAC=∠CAB,
∴△ACD∽△ABC.
∴
AB
AC=
AC
AD.
∴AC2=AB•AD.
AC平分∠BAD,
∴∠DAC=∠CAB.
又CD切⊙O于点C,
∴∠ACD=∠B(弦切角定理).
∵AD⊥CD,
∴∠ACD+∠DAC=90°.
即∠B+∠CAB=90°,∴∠BCA=90°.
∴AB是⊙O的直径(90°圆周角所对弦是直径).
(2)∵∠ACD=∠B,∠DAC=∠CAB,
∴△ACD∽△ABC.
∴
AB
AC=
AC
AD.
∴AC2=AB•AD.
如图,A、B为⊙O上的点,AC是弦,CD是⊙O的切线,C为切点,AD⊥CD于点D,若AC为∠BAD的平分线.
如图,A、B为圆O上的点,AC是弦,CD是圆O的切线,C为切点,AD⊥CD于点D.若AC为∠BAD的平分线
如图,AB是⊙O的直径,AC是弦,CD是⊙O的切线,C为切点,AD⊥CD于点D.求证:
初三的一道解三角形题如图,AB为圆O上的点,AC是弦,CD是切线,C为切点,AD⊥CD于D.若AC为角BAD的角平分线.
(几何问题,他舅 请忽略)如图,A,B为圆O上的点,AC是弦,CD是圆O的切线,C为切点,AD垂直CD于点D,若AC
:如图所示:AB是○O的直径,AC是弦,CD是○O的切线,C为切点,AD⊥CD于点D
如图,AB是圆O的直径,AC是弦,CD是圆O的切线,C为切点,AD垂直CD于点D求 AC乘AC等于AB乘AD
如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,C为⊙O上一点,且AC平分∠PAE,过点C作CD⊥PA于D.
如图,已知直线 交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA ,垂足为D
如图,AC是圆O的直径,AC=10厘米,PA,PB是圆O的切线,A,B为切点.过A作AD⊥BP,交BP于D点,连结AB,
如图,已知CD是⊙O的直径,AC⊥CD,垂足为C,弦DE∥OA,直线AE,CD相交于点B.
如图,AE是⊙O的切线,切点为A,BC∥AE,BD平分∠ABC交AE于点D,交AC于点F