设椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为(2√2)/3,且内切于圆x^2+y^2=9.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 10:53:02
设椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为(2√2)/3,且内切于圆x^2+y^2=9.
(1)求椭圆C的方程
(2)过点Q(1,0)作直线l(不与x轴垂直)与该椭圆相交于M、N两点,与y轴交于点R,若向量RM=λ向量MQ,向量RN=μ向量NQ,试判断λ+μ是否为定值,并说明理由
(1)求椭圆C的方程
(2)过点Q(1,0)作直线l(不与x轴垂直)与该椭圆相交于M、N两点,与y轴交于点R,若向量RM=λ向量MQ,向量RN=μ向量NQ,试判断λ+μ是否为定值,并说明理由
(1)因椭圆C内切于圆
则椭圆C短半轴与圆的半径相等
即b=3(I)
又e=c/a=(2√2)/3(II)
而a^2=b^2+c^2(III)
由(I)(II)(III)解得a=9
所以椭圆C方程为x^2/81+y^2/9=1
(2)令直线L:y=k(x-1)
令x=0,易知R坐标为(0,-k)
令直线L与椭圆C相交于M(x1,y1)、N(x2,y2)
易知向量RM=(x1,y1+k),MQ=(1-x1,-y1)
且知向量RN=(x2,y2+k),NQ=(1-x2,-y2)
因向量RM=λ向量MQ
则x1=λ(1-x1),即x1=λ/(1+λ)
且y1+k=λ(-y1),即y1=-k/(1+λ)
而M在椭圆C上
则[λ/(1+λ)]^2/81+[-k/(1+λ)]^2/9=1
即λ^2+9k^2=81(1+λ)^2(IV)
又向量RN=μ向量NQ
则x2=μ(1-x2),即x2=μ/(1+μ)
且y2+k=μ(-y2),即y2=-k/(1+μ)
而N在椭圆C上
则[μ/(1+μ)]^2/81+[-k/(1+μ)]^2/9=1
即μ^2+9k^2=81(1+μ)^2(V)
由(IV)-(V)得:
(λ+μ)(λ-μ)=81(λ+μ+2)(λ-μ)
易知向量RM与MQ反向,向量RN与NQ反向
即λ
再问: 椭圆内切于圆不是应该指椭圆的长半轴等于圆的直径吗
再答: 哦,是我错了,看成圆内切于椭圆了。但应该是椭圆的长半轴等于圆的半径(而不是直径),即a=3,这样可求出b=1,椭圆方程为x^2/9+y^2=1 第二问思路是一样,解出λ+μ=-9/4
则椭圆C短半轴与圆的半径相等
即b=3(I)
又e=c/a=(2√2)/3(II)
而a^2=b^2+c^2(III)
由(I)(II)(III)解得a=9
所以椭圆C方程为x^2/81+y^2/9=1
(2)令直线L:y=k(x-1)
令x=0,易知R坐标为(0,-k)
令直线L与椭圆C相交于M(x1,y1)、N(x2,y2)
易知向量RM=(x1,y1+k),MQ=(1-x1,-y1)
且知向量RN=(x2,y2+k),NQ=(1-x2,-y2)
因向量RM=λ向量MQ
则x1=λ(1-x1),即x1=λ/(1+λ)
且y1+k=λ(-y1),即y1=-k/(1+λ)
而M在椭圆C上
则[λ/(1+λ)]^2/81+[-k/(1+λ)]^2/9=1
即λ^2+9k^2=81(1+λ)^2(IV)
又向量RN=μ向量NQ
则x2=μ(1-x2),即x2=μ/(1+μ)
且y2+k=μ(-y2),即y2=-k/(1+μ)
而N在椭圆C上
则[μ/(1+μ)]^2/81+[-k/(1+μ)]^2/9=1
即μ^2+9k^2=81(1+μ)^2(V)
由(IV)-(V)得:
(λ+μ)(λ-μ)=81(λ+μ+2)(λ-μ)
易知向量RM与MQ反向,向量RN与NQ反向
即λ
再问: 椭圆内切于圆不是应该指椭圆的长半轴等于圆的直径吗
再答: 哦,是我错了,看成圆内切于椭圆了。但应该是椭圆的长半轴等于圆的半径(而不是直径),即a=3,这样可求出b=1,椭圆方程为x^2/9+y^2=1 第二问思路是一样,解出λ+μ=-9/4
设椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为e=根号2/2,点A是椭圆上的一点,且点A到椭圆c的
椭圆x^2/a^2+y^2/b^2=1(a>b>0)的离心率为√3/2,椭圆与直线x+2y+8=0相交于P,Q,且PQ=
设椭圆M:y^2/a^2+x^2/b^2=1,(a>b>0)的离心率与双曲线y^2/3-x^2=1,的离心率互为倒数,且
椭圆的方程,题目如下设椭圆C:a的平方分之x的平方+b的平方分之y的平方=1,a.b 都大于零且离心率为2/3倍根号2,
设椭圆C:x^2/a^2 + y^2/b^2=1(a>b>c)的离心率为1/2
已知椭圆x^2/a^2+y^2/b^2=1的右焦点为F2(3,0)离心率为e,设直线y=kx与椭圆相交于A、B两点,M、
已知椭圆C;x^2/a^2+y^2/b^2=1(a>b>0)的离心率为√2/2,以原点为圆心,椭圆
已知椭圆c:x^2/a^2+y^2/b^2=1(a>b>0)的焦距为4,且与椭圆x^2+y^2/2=1有相同的离心率
椭圆C x^2/a^2+y^2/b^2=1 (a>b>0)的离心率为√3/2,过右焦点F且斜率为k k>0的直线交椭圆A
椭圆C:x^2/a^2+y^2/b^=1,(a>b>0)离心率为√3/2,a+b=3,
椭圆离心率的问题,1.设椭圆x^2/a^2+y^2/b^2=1(a>b>0)的两个焦点分别为F1,F2,点P在椭圆上,且
已知椭圆X^2/a^2 +y ^2/b^2 =1(a>b>0)的离心率为1/2,过F1的直线交椭圆于A.B且两点三角形A