作业帮 > 数学 > 作业

四边形ABCD中,∠A+∠C=180°,M在AB上,MP⊥BC于P,MQ⊥CD于Q,MR⊥AD于R,PR交MQ于N.证明

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 22:58:15
四边形ABCD中,∠A+∠C=180°,M在AB上,MP⊥BC于P,MQ⊥CD于Q,MR⊥AD于R,PR交MQ于N.证明:RN/PN=AM/BM
四边形ABCD中,∠A+∠C=180°,M在AB上,MP⊥BC于P,MQ⊥CD于Q,MR⊥AD于R,PR交MQ于N.证明
1) 根据题意,容易证明ABCD四点共圆:
然后根据正弦定理:
PN=(MP/SINMNP)* (MR/MA)
NR=(MR/SINMNP)* (MP/MB)
将上面两式相除整理得:
(MP/SINMNP)* (MR/MA)
证明完毕~