证明:方程x^2-1997x+1997=9无整数根
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 07:05:00
证明:方程x^2-1997x+1997=9无整数根
原方程可化为x²-1997x+1988=0
设x1和x2是方程的两个整根,则x1+x2=1997 x1*x2=1988
其中1988=2x2x7x71,
则x1可从这四个数中任选一个或两个的乘积,去掉重复的情况,只有下面五种情况可以满足 x1*x2=1988=2x2x7x71但是不满足x1+x2=1997
即x1=2时,x2=2x7x71=994 x1+x2=996≠1997
x1=7时,x2=2x2x71=284 x1+x2=291≠19987
x1=71时,x2=2x2x7=28 x1+x2=99≠1997
x1=2x2=4时,x2=7x71=497 x1+x2=501≠1997
x1=2x7=14时,x2=2x71=142 x1+x2=156≠1997
即满足x1*x2=1988,同时又满足x1+x2=1997的x1和x2不存在.
方程即x²-1997x+1988=0没有整数根.
设x1和x2是方程的两个整根,则x1+x2=1997 x1*x2=1988
其中1988=2x2x7x71,
则x1可从这四个数中任选一个或两个的乘积,去掉重复的情况,只有下面五种情况可以满足 x1*x2=1988=2x2x7x71但是不满足x1+x2=1997
即x1=2时,x2=2x7x71=994 x1+x2=996≠1997
x1=7时,x2=2x2x71=284 x1+x2=291≠19987
x1=71时,x2=2x2x7=28 x1+x2=99≠1997
x1=2x2=4时,x2=7x71=497 x1+x2=501≠1997
x1=2x7=14时,x2=2x71=142 x1+x2=156≠1997
即满足x1*x2=1988,同时又满足x1+x2=1997的x1和x2不存在.
方程即x²-1997x+1988=0没有整数根.
证明题:证明当n是一个整数且n>2时,方程x^n+y^n=z^n无正整数x,y,z的解.
证明当n是一个整数且n>2时,方程x^n+y^n=z^n无正整数x,y,z的解.
证明当n是整数且 n > 2时,方程x^n + y^n = z^n无整数解x,y,z.(x^n代表x的n次方).
证明不定方程x² y²=1983无整数解
已知N是大于1的整数,证明关于X的方程x^2-8nx+27=0没有整数根
试证方程X^2-3Y^2=17无整数解
设方程ax^2+bx+c=0,系数a,b,c都是奇数,证明:这个方程无整数根.
已知关于x的方程新的x-2x-m+1=0无实数根,证明关于x的方程x-(m+2)x+2(m+1)=0必有2个实数根.
已知关于X的方程x-2x-m+1=0无实数根,证明关于x的方程x-(m+2)x+(2m+1)=0必有两个不相等的实数根
求使方程2x(kx-4)-x^2+6=0无实根的最小整数k.
用反证法证明方程f(x)=0无负数根
证明:不存在整数x,y使方程x^2+3xy-2y^2=122成立