如图,在四棱锥P-ABCD中,PD⊥平面ABCD,AD⊥CD,DB平分∠ADC,E是PC的中点,AD=CD=1,DB=2
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 13:32:28
如图,在四棱锥P-ABCD中,PD⊥平面ABCD,AD⊥CD,DB平分∠ADC,E是PC的中点,AD=CD=1,DB=2
2 |
(I)证明:设AC∩BD=H,连结EH.
在△ADC中,因为AD=CD,且DB平分∠ADC,
所以H为AC的中点.又由题设,E为PC的中点,
故EH∥PA.又EH⊂平面BDE,PA不包含于平面BDE,
所以PA∥平面BDE.
(II)证明:因为PD⊥平面ABCD,
AC⊂平面ABCD,所以PD⊥AC.
由(I)得,DB⊥AC.
又PD∩DB=D,故AC⊥平面PBD.
(Ⅲ) 由AC⊥平面PBD知,
BH为BC在平面PBD内的射影,
所以∠CBH为直线BC与平面PBD所成的角.
由AD⊥CD,AD=CD=1,DB=2
2,
得DH=CH=
2
2,BH=
3
2
2,BC=
5,
在Rt△BHC中,sin∠CBH=
CH
BC=
3
2
2
5=
3
10
10,
所以直线BC与平面PBD所成的角的正弦值为
3
10
10.
在△ADC中,因为AD=CD,且DB平分∠ADC,
所以H为AC的中点.又由题设,E为PC的中点,
故EH∥PA.又EH⊂平面BDE,PA不包含于平面BDE,
所以PA∥平面BDE.
(II)证明:因为PD⊥平面ABCD,
AC⊂平面ABCD,所以PD⊥AC.
由(I)得,DB⊥AC.
又PD∩DB=D,故AC⊥平面PBD.
(Ⅲ) 由AC⊥平面PBD知,
BH为BC在平面PBD内的射影,
所以∠CBH为直线BC与平面PBD所成的角.
由AD⊥CD,AD=CD=1,DB=2
2,
得DH=CH=
2
2,BH=
3
2
2,BC=
5,
在Rt△BHC中,sin∠CBH=
CH
BC=
3
2
2
5=
3
10
10,
所以直线BC与平面PBD所成的角的正弦值为
3
10
10.
如图,在四棱锥P-ABCD中,PD⊥平面ABCD,AD=CD,DB平分∠ADC,E为PC的中点.
2.如图,四棱锥P-ABCD中,底面ABCD为矩形,PD⊥底面ABCD,AD=PD,E、F分别为CD、PB的中点.
在四棱锥P-ABCD中,底面ABCD为矩形,PD⊥底面ABCD,AD=PD E F分别是CD PB中点
如图,在四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD是平行四边形,且AC⊥CD,PA=AD,M,Q分别是PD
如图,在底面是矩形的四棱锥P-ABCD中,PA⊥平面ABCD,PA=AD,E是PD的中点
如图,在四棱锥P-ABCD中,ABCD是矩形,PA⊥平面ABCD,PA=AD=1,AB=3,点F是PD的中点,点E在CD
在四棱锥P-ABCD中,AB⊥平面PAD,AB∥CD,PD=AD,E是PB的中点,F是DC上的点,且DF=1/2AB,P
如图,在四棱锥P-ABCD中,底面ABCD是矩形,AD⊥PD,BC=1,PC=2(根号3),PD=CD=2.
如图所示,在四棱锥P-ABCD中 底面ABCD是菱形,∠DAB=60°,PD⊥平面ABCD,PD=AD,点E为BC中点
如图,已知在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=1,AB=2,F是PD的中点,E是
在四棱锥p-abcd中,地面abcd是边长为2的正方形,pd垂直平面abcd,且pd=ad,e为pd的中点
如图,四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,AB⊥AD,CD⊥AD,CD=2AB,E为中点(