设3阶矩阵A的特征值为1,2,0,其相应的特征向量分别为α1,α2,α3,若B=A3-2A2+3E,
设3阶矩阵A的特征值为1,2,0,其相应的特征向量分别为α1,α2,α3,若B=A3-2A2+3E,
请问3阶设3阶方阵A的特征值为1,2,0,其相应的特征向量a1,a2,a3.B=A^3-2A+3E,求B^-1的特征向量
设3阶矩阵A的特征值为1,2,-3,a1,a2,a3依次对应的特征向量设方阵B=A*-2A+3I,求B^-1的特征值及d
已知三阶矩阵A的特征值为1,—1,2,设矩阵B=A3-2A2+3E,试计算|B|
设A为3阶矩阵,a1,a2分别为A的属于特征值-1,1的特征向量,向量a3满足Aa3=a2+a3,证明a1,a2,a3线
设A为3阶矩阵,其特征值分别为-1,2,3,对应的特征向量分别为X1,X2,X3.若P=(X1,X2,X3)
设t1,t2,t3为3阶矩阵A的三个互不相同的特征值,相应的特征向量依次为a1,a2,a3,令b=a1+a2+a3,证明
已知三阶矩阵A的特征值为1,2,3 对应的特征向量分别为a1,a2,a3,令P=(3a3,2a2,a1),则P^(-1)
设A为3阶矩阵,a1,a2为A的分别属于特征值-1和1的特征向量,a3满足Aa3=a2+a3.证明a1,a2,a3线性无
设A为3阶方阵,x1,x2,x3是A的三个不同特征值,对应特征向量分别为a1,a2,a3,令b=a1+a2+a3.
线性代数证明题设A为3阶矩阵,a1,a2为矩阵A的分别属于特征值-1和1的特征向量,a3满足Aa3=a2+a3,证明a1
设三阶矩阵A的三个特征值为1,1,2,且a1,a2,a3分别为对应的特征向量,则