x,y,z分别为三角形的三边 求证(x2+y2-z2)/2xy+(x2+z2-y2)/2xz+(y2+z2-x2)/2y
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 16:41:09
x,y,z分别为三角形的三边 求证(x2+y2-z2)/2xy+(x2+z2-y2)/2xz+(y2+z2-x2)/2yz>1
x2指x的平方
x2指x的平方
(x2+y2-z2)/2xy+(x2+z2-y2)/2xz+(y2+z2-x2)/2yz>1等价于
COSA+COSB+COSC>1等价于COSA+COSB>1-COSC等价于2COS(A+B)/2 *cos(A-B)/2>2(sin(C/2))^2因为A+B)/2+C/2=90度 即证2COS(A+B)/2 *cos(A-B)/2>2(cos(A+B/2))^2
即证cos(A-B)/2>cos(A+B/2
即证cosA/2*cosB/2+sinA/2*sinB/2>cosA/2*cosB/2-sinA/2*sinB/2
即证2sinA/2*sinB/2>0
因为A/2,B/2都是锐角,显然成立
COSA+COSB+COSC>1等价于COSA+COSB>1-COSC等价于2COS(A+B)/2 *cos(A-B)/2>2(sin(C/2))^2因为A+B)/2+C/2=90度 即证2COS(A+B)/2 *cos(A-B)/2>2(cos(A+B/2))^2
即证cos(A-B)/2>cos(A+B/2
即证cosA/2*cosB/2+sinA/2*sinB/2>cosA/2*cosB/2-sinA/2*sinB/2
即证2sinA/2*sinB/2>0
因为A/2,B/2都是锐角,显然成立
已知:实数 x y z 不全为 0 求证:√x2+xy+y2 + √y2+yz+z2 + √z2+zx+x2 >3/2
x,y,z为正实数 求证 x2/(y2+z2+yz)+y2/(z2+x2+zx)+z2/(x2+y2+xy)>=1
已知x-y=5,y-z=2,求x2+y2+z2-xy-yz-xz的值
已知x+y+z=2,xy+yz+xz=-5,求x2+y2+z2的值.
已知x2+y2+z2≤2x+4y-6z-14,求x2+y2+z2的值.
x+y+z=4 xy+yz+xz=4求x2+y2+z2的解 已知x2+y2+z2-2x+4y-6z+14=0求x+y+z
实数x,y,z,若x2+y2=1,y2+z2=2,z2+x2=2,则xy+yz+zx的最小值是
实数x,y,z,若x2+y2=1,y2+z2=2,z2+x2=2,则xy+yz+zx的最小值是 怎求
已知x2 + y2 + z2 = xy + xz + yz = 3 求x+y+z
因式分解:x2-2xy+y2-z2.
已知x-y=5,y-z=3,求x2+y2+z2-xy-yz-xz的值
已知xyz=1.x2+y2+z2=16.求1/xy+2z+1/yz+2x+1/xz+2y的值