为什么摆线x=a(t-sint),y=a(1-cost)的一拱的区间为[0,2πa]
高等数学摆线求摆线x=a(t - sint),y=a(1 -cost)的一拱(0≤t≤2∏) 的长度
求摆线x=a(t-sint),y=a(1-cost)的一拱(0≤t≤2π)与y=0绕x轴所转成图形的体积.
高数定积分几何应用求摆线x=a(t-sint),y=a(1-cost)的一拱(0≤t≤2π)与y=0绕y轴(其实等价于绕
求由摆线x=a(t-sint),y=a(1-cost)的一拱(0≦t≦2π)与x轴所围成的图形面积
求摆线x=a(t-sint),y=a(1-cost)的一拱与横轴围成的图形面积
求由摆线x=a(t-sint),y=a(1-cost)的一拱(0≦t≦2ㄇ)与x轴所围成的图形的.面积
求∫∫y^2dσ,其中D是由摆线x=a(t-sint),y=a(1-cost)(0≤t≤2π)的一拱与x轴所围成
摆线x=a(t-sint),y=a(1-cost)的一拱和直线y=0围成的图形绕x轴旋转的旋转体体积多少?
求摆线的参数方程x=a(t-sint) 和 y=a(1-cost)所确定的函数y=y(x)的
在摆线x=a(t-sint),y=(1-cost)上求分摆线第一拱成1:3的点的坐标
求解一道高数题 ,求由摆线x=a(t - sint),y=a(1 -cost)的一拱(0≤t≤2∏) 与横轴所围图形的面
1.由摆线x=a(t - sint),y=a(1 -cost)的一拱(0≤t≤2∏) 与横轴所围图形的面积