设lim(x->X)f(x)=∞,且x->X时,g(x)的主部是f(x)
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/20 14:49:10
设lim(x->X)f(x)=∞,且x->X时,g(x)的主部是f(x)
证明lim(x->X)g(x)=∞,且g(x)~f(x) (x->X).
这是道例题,过程里有“由函数极限的局部保号性有g(x)/f(x)>=1/2”为什么g(x)/f(x)>=1/2?这个地方不知道怎么理解
证明:由于 g(x)=f(x)+o(f(x)) (x->X)
则lim(x->X)g(x)/f(x)=lim(x->X)[1+o(f(x))/f(x)]=1
由函数极限的局部保号性有g(x)/f(x)>=1/2....
证明lim(x->X)g(x)=∞,且g(x)~f(x) (x->X).
这是道例题,过程里有“由函数极限的局部保号性有g(x)/f(x)>=1/2”为什么g(x)/f(x)>=1/2?这个地方不知道怎么理解
证明:由于 g(x)=f(x)+o(f(x)) (x->X)
则lim(x->X)g(x)/f(x)=lim(x->X)[1+o(f(x))/f(x)]=1
由函数极限的局部保号性有g(x)/f(x)>=1/2....
因为lim(x->X)g(x)/f(x)=lim(x->X)[1+o(f(x))/f(x)]=1,
故在x=X的某些邻域(比如(X-ε,X+ε),ε很小)中g(x)/f(x)不会太偏离1,比如可以|g(x)/f(x)-1|≤1/2,
那就有g(x)/f(x)≥1/2了······
所谓”极限的局部保号性“是指如下命题:
设x->a时f(x)->A,则对任意B0,使得任意x∈(X-δ,X+δ),f(x)>B
那么局部【当|x-X|
故在x=X的某些邻域(比如(X-ε,X+ε),ε很小)中g(x)/f(x)不会太偏离1,比如可以|g(x)/f(x)-1|≤1/2,
那就有g(x)/f(x)≥1/2了······
所谓”极限的局部保号性“是指如下命题:
设x->a时f(x)->A,则对任意B0,使得任意x∈(X-δ,X+δ),f(x)>B
那么局部【当|x-X|
设f(x)有二阶导数,且f''(X)>0,lim(x趋于0)f(x)/x=1 ..证明:当x>0时,有f(x)>x
设函数f(x)有界,又lim(x→∞)g(x)=0,证明:lim(x→∞)f(x)g(x)=0(证明过程)
设f(x)在x=0的某一邻域内二阶可导,且lim(x-->0)f(x)/x=0,f''(0)=2.求lim(x-->0)
设f(x)具有连续导数,且满足f(x)=x+∫(上x下0)tf'(x-t)dt求lim(x->-∞)f(x)
(1)设f (x)是偶函数,g (x)是奇函数,且f (x)+g(x)=1/X+1求函数f (x),g(x)的解析式
lim[f(x)]^g(x)=e^lim[f(x)-1]g(x).经验公式,
已知对任意实数x,有f(-x)= - f(x),g(-x)= - g(-x),且x>0时,f(x)的导数>0,g(x)的
设f ' (0)=a,g ' (0)=b,且f(0)=g(0),计算lim((f(x)-g(-x))/x) lim下面是
设函数f(x)在(a,+∞ )上可导,且lim(x->+∞ )(f(x)+f'(x))=0,证明:lim(x->+∞ )
泰勒公式的证明题设lim(x->0)f(x)/x=1 且f''(x)>0 证明f(x)>=x
f(x)在正负无穷内可倒,且在x→∞时 limf '(x)=e,lim[ (x+c)/(x-c)]^x=lim[f(x)
设lim f(x) = A ,lim g(x) = B.用极限定义来证明lim[f(x) ● g(x)] = lim f