已知a,b,c属于R+,且a+b>c,求证:a/(2+a)+b/(2+b)>c/(2+c)
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/14 20:31:40
已知a,b,c属于R+,且a+b>c,求证:a/(2+a)+b/(2+b)>c/(2+c)
2.是否存在二次函数f(x),使得条件一当:|X|≤1时,|f(x)|≤1,条件二|f(2)|≥7同时成立,若存在.求出所有这样的f(x),若不存在说明理由
都要详解
2.是否存在二次函数f(x),使得条件一当:|X|≤1时,|f(x)|≤1,条件二|f(2)|≥7同时成立,若存在.求出所有这样的f(x),若不存在说明理由
都要详解
1)
证明:
要证a/2+a+b/2+b>c/2+c,
只要证a/2+a+b/2+b-c/2-c>0即可.
而 a/2+a+b/2+b-c/2-c
=1/2(a+b-c)+(a+b-c)
=3/2(a+b-c)
因为a,b,c∈R+,a+b>c
知:a+b-c>0
得:a/2+a+b/2+b-c/2-c>0
即:a/2+a+b/2+b>c/2+c
原命题得证.
2)
不存在
设f(x)=ax^2+bx+c
|f(-1)|=|a-b+c|≤1
|f(0)|=|c|≤1
|f(1)|=|a+b+c|≤1
|f(2)|=|4a+2b+c|
=|(a-b+c)+3(a+b+c)-3c|
≤|a-b+c|+3|a+b+c|+3|-c|
≤7
证明:
要证a/2+a+b/2+b>c/2+c,
只要证a/2+a+b/2+b-c/2-c>0即可.
而 a/2+a+b/2+b-c/2-c
=1/2(a+b-c)+(a+b-c)
=3/2(a+b-c)
因为a,b,c∈R+,a+b>c
知:a+b-c>0
得:a/2+a+b/2+b-c/2-c>0
即:a/2+a+b/2+b>c/2+c
原命题得证.
2)
不存在
设f(x)=ax^2+bx+c
|f(-1)|=|a-b+c|≤1
|f(0)|=|c|≤1
|f(1)|=|a+b+c|≤1
|f(2)|=|4a+2b+c|
=|(a-b+c)+3(a+b+c)-3c|
≤|a-b+c|+3|a+b+c|+3|-c|
≤7
已知abc属于r求证a\b+c+b\c+a+c\a+b>=3/2
已知a,b,c属于R+,且a+b+c=1,求证4a^2/(1-b)+4b^2/(1-c)+4c^2
已知a,b属于正实数,且2c>a+b,求证:c-根号下c^2-ab<a<c+根号下c^2-ab
已知a,b,c,d属于R+,且a+b+c+d=1,求证a^2+b^2+c^2+d^2>=1/4
已知a,b,c属于R求证:b^2c^2+c^2a^2+a^2b^2>=abc(a+b+c)
a,b,c属于R+求证:a^2/(b+c)+b^2/(a+c)+c^2/(a+b)>=(a+b+c)/2
已知a、b、c∈R,且a+b+c=2,a+b+c=2,求证:a、b、c∈[0,4/3]
若A,B,C属于R,且2A+B+C=2,求(A+B)(A+C)的最大值?
已知a,b,c属于R,a,b,c 互不相等且abc=1,求证:根a+根b+根c《1/a+1/b+1/c
已知a,b,c属于R+且a+b+c=1求证a+1/a) +(b+1/b) +(c+1/c) 大于等于100/3
设a,b,c,属于正实数,求证a/(b+c)+b/(c+a)+c/(a+b)>=2/3
已知a,b,c是正数,求证:a^(2a)b^(2b)c^2(2c)≥a^(b+c)b^(c+a)c^(a+b)