已知P(m,a)是抛物线y=ax2上的点,且点P在第一象限.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 10:26:28
已知P(m,a)是抛物线y=ax2上的点,且点P在第一象限.
(1)求m 的值;
(2)直线y=kx+b过点P,交x轴的正半轴于点A,交抛物线于另一点M;
①当b=2a时,∠OPA=900是否成立?如果成立,请证明;如果不成立,举出一个反例说明;②当b=4时,记△MOA的面积为S,求 1/s 的最大值.
(1)求m 的值;
(2)直线y=kx+b过点P,交x轴的正半轴于点A,交抛物线于另一点M;
①当b=2a时,∠OPA=900是否成立?如果成立,请证明;如果不成立,举出一个反例说明;②当b=4时,记△MOA的面积为S,求 1/s 的最大值.
(1)m2a=a(a>0),
m2=1(m>0),
即m=1;
(2)①b=2a,y=kx+2a,
P在直线上,则a=k+2a,即a=-k(k<0)
则kx+2a=0,即x=-2ak=−−2kk=2,
A(2,0)
-kx2=kx-2k⇒x2+x-2=0⇒(x+2)(x-1)=0,x=-2或x=1
M(-2,4a)
∠OPA=90°
即a2=1,a=1
k=-1,y=-x-2,y=x2
P(1,1)
故当a=1时,∠OPA=90°成立,即当a>0且a≠1时,∠OPA=90°不成立;
②当b=4时,直线y=kx+b即为直线y=kx+4,
kx+4=0⇒x=-4k
又∵直线y=kx+4过点P(1,a),
∴k+4=a⇒k=a-4,
(a-4)x+4=ax2
即ax2-(a-4)x-4=0
即(ax+4)(x-1)=0
∴S=44−a•16a•12=324a−a2
1S=18a-132a2=-132(a-2)2+18,
∴当a=2时,1Smax=18.
m2=1(m>0),
即m=1;
(2)①b=2a,y=kx+2a,
P在直线上,则a=k+2a,即a=-k(k<0)
则kx+2a=0,即x=-2ak=−−2kk=2,
A(2,0)
-kx2=kx-2k⇒x2+x-2=0⇒(x+2)(x-1)=0,x=-2或x=1
M(-2,4a)
∠OPA=90°
即a2=1,a=1
k=-1,y=-x-2,y=x2
P(1,1)
故当a=1时,∠OPA=90°成立,即当a>0且a≠1时,∠OPA=90°不成立;
②当b=4时,直线y=kx+b即为直线y=kx+4,
kx+4=0⇒x=-4k
又∵直线y=kx+4过点P(1,a),
∴k+4=a⇒k=a-4,
(a-4)x+4=ax2
即ax2-(a-4)x-4=0
即(ax+4)(x-1)=0
∴S=44−a•16a•12=324a−a2
1S=18a-132a2=-132(a-2)2+18,
∴当a=2时,1Smax=18.
已知点P(m,n)是抛物线y=ax2方上的点,且点P在第—象限,求m的值
已知O是平面直角坐标系的原点,P(m,a)是抛物线y=ax^2上的点,且点P在第一象限,
已知P是抛物线y^2=2x上的动点,点P到准线的距离为d,且点P在y轴上的射影是M,点A(3.5,4),
已知点M是抛物线y2=2px(p>0)位于第一象限部分上的一点,且点M与焦点F的距离|MF|=2p,则点M的坐标为(
一道初二的一次函数题已知点A坐标(4,0),点P(x,y)在第一象限内,且P在直线2x+y=10上,O是坐标原点.(1)
已知,如图,直线l经过A(4,0)和B(0,4)两点,它与抛物线y=ax2在第一象限内相交于点P,又知△AOP的面
已知,如图,直线l经过A(4,0)和B(0,4)两点,它与抛物线y=ax2在第一象限内相交于点P,又知△AOP的面积为4
如图,已知抛物线y=ax2+bx+c(a≠0)的顶点M在第一象限,抛物线与x轴相交于A、B两点(点A在点B的左边),与y
已知点P是抛物线x2=4y上的动点,点P在直线y+1=0上的射影是点M,点A的坐标(4,2),则|PA|+|PM|的最小
已知点F是抛物线y^2=4x的焦点,点P在该抛物线上,且点P的横坐标是2,则|PF|=?
已知直线交两坐标轴于AB两点,且OA=OB=1,点P(a,b)是y=1/2x上在第一象限内的点,过点P作PM⊥x轴于M,
高中数学向量题1.已知点A`B`C均在以F点的抛物线y^2=2px(p>)上,点A(m,8)到其准线的距离是10,且点M