作业帮 > 数学 > 作业

抛物线y2=4x,A,B是抛物线上的点,OA垂直OB(O是坐标原点),(1)求证直线AB过定点;(2)求三角形OAB面积

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 16:05:20
抛物线y2=4x,A,B是抛物线上的点,OA垂直OB(O是坐标原点),(1)求证直线AB过定点;(2)求三角形OAB面积最小值.救命阿弟兄们!
抛物线y2=4x,A,B是抛物线上的点,OA垂直OB(O是坐标原点),(1)求证直线AB过定点;(2)求三角形OAB面积
可设点A(a^2,2a),B(b^2,2b).由OA⊥OB可得ab=-4.(1)易知,直线AB的方程为2x-(a+b)y-8=0.===>显然,直线AB线过定点(4,0).(2)易知,S=|OA|*|OB|/2=[√(a^4+4a^2)*√(b^4+4b^2)]/2=4√[8+a^2+b^2]≥16.等号仅当a=2,b=-2或a=-2,b=2时取得,故Smin=16.