已知函数f(x)=acos2ωx+√3asinωxcosωx+b,x∈R(a>0,ω>0)的最小正周期为π,函数f(x)
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 19:26:57
已知函数f(x)=acos2ωx+√3asinωxcosωx+b,x∈R(a>0,ω>0)的最小正周期为π,函数f(x)的最大值是7/4,最小
值是3/4
(1)求ω及a、b的值
(2)指出f(x)的单调递增区间
值是3/4
(1)求ω及a、b的值
(2)指出f(x)的单调递增区间
f(x)=a*(1+cos2wx)/2+(√3/2)*sin2wx+b=a*[(1/2)*cos2wx+(√3/2)*sin2wx]+a/2+b
=a*sin(2wx+π/6)+a/2+b
(3/2)*a+b=7/4
(-1/2)*a+b=3/4
{a=1/2 b=1
2π/2w=π ==>w=1
f(x)=1/2)*sin(2x+π/6)+5/4
由-π/2+2kπ≤2x+π/6≤π/2+2kπ得单调增区间:【-π/3+kπ,π/6+kπ】
=a*sin(2wx+π/6)+a/2+b
(3/2)*a+b=7/4
(-1/2)*a+b=3/4
{a=1/2 b=1
2π/2w=π ==>w=1
f(x)=1/2)*sin(2x+π/6)+5/4
由-π/2+2kπ≤2x+π/6≤π/2+2kπ得单调增区间:【-π/3+kπ,π/6+kπ】
已知函数f(x)=2sinωxcosωx(ω>0,x∈R)1.求f(x)的值域2.若f(x)的最小正周期为4π,求ω的值
已知函数f(x)=2sinωx•cosωx+2Acos2ωx-A(其中A>0,ω>0)的最小正周期为π,最大值为2.
(2009•荆州模拟)已知函数f(x)=3sinωxcosωx−cos2ωx+12(ω>0,x∈R)的最小正周期为π2.
已知函数f(x)=asinωx+bcosωx(ω>0,a,b不全为零)的最小正周期为2,且f(1/4)=根号3,求f(x
已知函数f(x)=Asin(ωx+4分之π)(其中x∈R,A>0,ω>0)的最大值为2,最小正周期为8.(1)求函数f(
f(x)=根号3sinωxcosωx-cos²ωx-1/2(ω>0,x∈R)的最小正周期为π (1)求函数f(
已知函数f(x)=2sinωxcosωx−23sin2ωx+3(ω>0),的最小正周期为π.
已知函数f(x)=2sinωxcosωx+23sin2ωx−3(ω>0)的最小正周期为π.
已知函数f(x)=3sinωxcosωx−cos2ωx(ω>0)的最小正周期为π2
已知函数f(x)=cos2ωx+3sinωxcosωx(ω>0)的最小正周期为π.
已知函数f(x)=3asinωx•cosωx−cos2ωx+32(ω∈R+,a∈R)的最小正周期为π,其图象关于直线x=
设函数f(x)=asinωx+bcosωx(ω>0)已知函数f(x)的最小正周期为π 切当x=π/6是f(x)取的最大值