已知函数f(x)=asinωx+bcosωx(ω>0,a,b不全为零)的最小正周期为2,且f(1/4)=根号3,求f(x
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/23 18:53:04
已知函数f(x)=asinωx+bcosωx(ω>0,a,b不全为零)的最小正周期为2,且f(1/4)=根号3,求f(x)最大值的取值范围
f(x)=asinωx+bcosωx的最小正周期T=2π/w=2得w=π,
f(x)=asinπx+bcosπx
f(1/4)=√2/2*(a+b)=√3,
即a+b=√6,
f(x)最大值为√(a²+b²)
由于a²+b²≥(a+b)²/2=3,
所以√(a²+b²)≥√3,
即f(x)最大值的取值范围为[√3,+∞).
再问: a²+b²≥(a+b)²/2=3 这步怎么出来的
再答: a2+b2=(a2+b2+a2+b2)/2≥(a2+b2+2√ab)/2=(a+b)2/2。 最好记住这个公式。 用相减法证明这个更加简便。 O(∩_∩)O~
f(x)=asinπx+bcosπx
f(1/4)=√2/2*(a+b)=√3,
即a+b=√6,
f(x)最大值为√(a²+b²)
由于a²+b²≥(a+b)²/2=3,
所以√(a²+b²)≥√3,
即f(x)最大值的取值范围为[√3,+∞).
再问: a²+b²≥(a+b)²/2=3 这步怎么出来的
再答: a2+b2=(a2+b2+a2+b2)/2≥(a2+b2+2√ab)/2=(a+b)2/2。 最好记住这个公式。 用相减法证明这个更加简便。 O(∩_∩)O~
已知函数f(x)=asinωx+bcosωx(ω>0,a,b不全为零)的最小正周期为2,且f(1/4)=根号3,求f(x
已知函数f(x)=Asinψx+Bcosψx(其中A,B,ψ是实常数,ψ>0)的最小正周期为2,
设函数f(x)=asinωx+bcosωx(ω>0)已知函数f(x)的最小正周期为π 切当x=π/6是f(x)取的最大值
已知定义在R上的函数f(x)=asin(ωx)+bcos(ωx),(其中ω>0,a>0,b>0)的周期为π且当x=π/1
设函数f(x)=acos^2(ωx)-(根号3)asin(ωx)cos(ωx)+b的最小正周期为π(a=/=0,ω>0)
已知函数y=Asin(ωx+φ)(A>0,ω>0,0<φ<π/2)的最小正周期为π,且当x=2/3π时,f(x)取得最小
已知函数f(x)=Asin(ωx+4分之π)(其中x∈R,A>0,ω>0)的最大值为2,最小正周期为8.(1)求函数f(
f(x)=asinωx+bcosωx+1(ab≠0,ω>0)的周期为π,f(x)的最大值为4,且f(π/6)=(3√3)
已知函数f(x)=Asin(wx+派/4)(其中x€R,A>0,w>0)的最大值为2、最小正周期为8.(1)
已知函数f(x)=Asin(wx+φ)(A>0,w>0,|φ|<π/2)的最小正周期为2,且当x=1/3时,f(x)取得
已知函数f(x)=(根号3sinwx+coswx) coswx-1/2 (w>0) 的最小正周期为4π.求f(x)的单调
1、已知函数f(x)=sin²ωx+根号3sinωxsin[ωx+π/2] (ω>0)的最小正周期为π.(1)