作业帮 > 数学 > 作业

在等差数列{an}中,若a1+a2+a3=3,an-2+an-1+an=165,sn=840,则此数列的项数n为

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 01:31:31
在等差数列{an}中,若a1+a2+a3=3,an-2+an-1+an=165,sn=840,则此数列的项数n为
在等差数列{an}中,若a1+a2+a3=3,an-2+an-1+an=165,sn=840,则此数列的项数n为
设等差数列an=a1+(n-1)d
又an为等差数列
∴a1+a3=2a2
∵a1+a2+a3=3
3a2=3
a2=1
a1+d=1
∵an-2+an-1+an=165
而an-2+an=2an-1
∴3an-1=165
an-1=55
an-d=55
∵Sn=840
∴(a1+an)*n/2=840
(a1+d+an-d)*n=1680
(1+55)*n=1680
n=30