求教,泰勒公式将F(x)在x0处展开时,是只针对在x0极小领域内的x,还是所有定义域内的x
问下泰勒公式的问题我知道泰勒公式成立的前提是f(x)在x=x0的领域内n+1阶可导,我想问的是如果反过来呢,如何f(x)
泰勒公式展开式 在0点的展开式不就是 f(x)=f(x0)+f'(x0)(x-x0)+...Fn(x0)/n!(x-x0
高数函数极限 连续 若f(x)在x0的领域内有定义,且f(x0-0)=f(x0+0),则f(x)在x0处是否有极限,是否
函数极限疑问?y=F(X)在x0的某一领域内有定义 如果 lim(x→x0)f(x)=f(x0) 那么称函数f(x)在x
已知集合M是满足下列性质的函数f(x)的全体:在定义域内存在x0,使得f(x0+1)=f(x0)+f(1)成立
已知集合M是满足下列性质的函数f(x)的全体:在定义域内存在x0,使得f(x0+1)=f(x0)+f(1)成立.
设函数f(x)和g(x)均在某一领域内有定义,f(x)在x0处可导,f(x0)=0,g(x0)在X0处连续,讨论f(x)
设函数f(x)和g(x)均在某一领域内有定义,f(x)在x0处可导,f(x0)=0,g(x0)在X0处连续,
F(X)在X0点处有定义,是F(X)在X0处极限存在的( )条件
定义:若函数f(X)对其定义域内的某一个数x0,有f(X0)=x0.则称x0是f(X)的一个不动点,
设f(x)有三阶导数,当x趋于x0时,f(x)是x-x0的二阶无穷小,问f(x)在x0处的泰勒展开式有何特点?
已知集合M是满足下列性质的函数f(x)的全体:在定义域内存在x0,使得f(x0+1)=f(x0)+f(1)成立. (1)