作业帮 > 数学 > 作业

高一三角函数题,求详解

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 04:21:55
高一三角函数题,求详解
在三角形ABC中,若sin2A=sin2B+sin2C,且sinA=2sinBcosC,判断三角形ABC的形状.
高一三角函数题,求详解
分析:首先由条件sin2A = sin2B+ sin2C及正弦定理及勾股定理可推得A=90°,再根据另一条件知△ABC必定是特殊的直角三角形.
由sin2A = sin2B+ sin2C,利用正弦定理得a2 = b2+ c2,
故△ABC是直角三角形,且∠A=90°,
∴B+C=90°,B=90°-C,
∴sinB=cosC,
∴由sinA=2sinB cosC可得:1=2sin2B,
∴sinB2 =1/2 ,sinB=根号2/2 ,
∴B=45°.
∴△ABC是等腰直角三角形.
再问: a2 = b2+ c2,这个,怎么利用正弦定理推出来的??
再答: 正弦定理:a/sinA=b/sinB=c/sinC=2R 所以sinA=a/2R, sinB=b/2R, sinC=c/2R (sinA)^2=(sinB)^2+ (sinC)^2 a^2/4R^2=b^2/4R^2+c^2/4R^2 所以a^2 = b^2+ c^2 注: 题中sin2A=sin2B+sin2C与我回答时写的a2 = b2+ c2 中的" 2 "都是平方
再答: 正弦定理:a/sinA=b/sinB=c/sinC=2R 所以sinA=a/2R, sinB=b/2R, sinC=c/2R (sinA)^2=(sinB)^2+ (sinC)^2 a^2/4R^2=b^2/4R^2+c^2/4R^2 所以a^2 = b^2+ c^2 注: 题中sin2A=sin2B+sin2C与我回答时写的a2 = b2+ c2 中的" 2 "都是平方