如图,四边形OABC是矩形,OA=4,OC=8,将矩形OABC沿直线AC折叠
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 04:39:22
如图,四边形OABC是矩形,OA=4,OC=8,将矩形OABC沿直线AC折叠
四边形OABC是矩形,OA=4,OC=8,将矩形OABC沿直线OB折叠。使点A落在D处,BD交OC于E。
【1】求OE的长
【2】求过O,C,D三点抛物线的解析式
【3】若F为过O,D,C三点抛物线的顶点,一动点P从点A出发,沿射线AB以每秒1个单位长度的速度匀速运动,当运动时间t秒为何值时,直线PF把△FOB分成面积之比为1:3的两部分?
四边形OABC是矩形,OA=4,OC=8,将矩形OABC沿直线OB折叠。使点A落在D处,BD交OC于E。
【1】求OE的长
【2】求过O,C,D三点抛物线的解析式
【3】若F为过O,D,C三点抛物线的顶点,一动点P从点A出发,沿射线AB以每秒1个单位长度的速度匀速运动,当运动时间t秒为何值时,直线PF把△FOB分成面积之比为1:3的两部分?
(1)∵四边形OABC是矩形,
∴∠CDE=∠AOE=90°,OA=BC=CD.
又∵∠CED=∠OEA,
∴△CDE≌△AOE.
∴OE=DE.
∴OE2+OA2=(AD-DE)²,
即OE2+42=(8-OE)²,
解之,得OE=3.
(2)EC=8-3=5.如图4,过D作DG⊥EC于G,
∴△DGE∽△CDE.
∴DE:EC=DG;D ,ED:EC=EG:DE .
∴DG=12/5 ,EG=9/5 .
∴D(24/5,5/12→) .
因O点为坐标原点,
故可设过O,C,D三点抛物线的解析式为y=ax2+bx.
∴ 64a+8b=0 (24/5)²a+24/5b=12/5 解a=-5/32 b=5/4 y=-5/32x²+5/4x
(3)∵抛物线的对称轴为x=4,
∴其顶点坐标为(4,5/2) .
设直线AC的解析式为y=kx+b,
则 8k+b=0 b=-4解之,得k=1/2 b=-4
∴ y=1/2x-4.
设直线FP交直线AC于H(m,1/2m-4),过H作HM⊥OA于M.
∴△AMH∽△AOC.
∴HM:OC=AH:AC.
∵S△FAH:S△FHC=1:3或3:1,
∴AH:HC=1:3或3:1,
∴HM:OC=AH:AC=1:4或3:4.
∴HM=2或6,
即m=2或6.
∴H1(2,-3),H2(6,-1).
直线FH1的解析式为y=11/4 x-17/2 .
当y=-4时,x=18/11 .
直线FH2的解析式为y=-7/4x+19/2 .
当y=-4时,x=54/7 .
∴当t=18/11 秒或54/7 秒时,
直线FP把△FAC分成面积之比为1:3的两部分.
再问: 对不起,我没学过相似三角形,有其他方法吗?
再答: 那你做这个题就超前了 ,这题就是用相似做。
再问: 这是元培中学上一届初三期中考题,老师让我们做的。老师没说这题不能做,会不会有别的做法。
再答: 初三好像有学相似,不过你先写上去,估计你们快讲到了
再问: 算了,还是不写吧,本来就没学过,要下节课才学,现在做了算什么,我们老师查这个查很严的,严禁抄袭。
∴∠CDE=∠AOE=90°,OA=BC=CD.
又∵∠CED=∠OEA,
∴△CDE≌△AOE.
∴OE=DE.
∴OE2+OA2=(AD-DE)²,
即OE2+42=(8-OE)²,
解之,得OE=3.
(2)EC=8-3=5.如图4,过D作DG⊥EC于G,
∴△DGE∽△CDE.
∴DE:EC=DG;D ,ED:EC=EG:DE .
∴DG=12/5 ,EG=9/5 .
∴D(24/5,5/12→) .
因O点为坐标原点,
故可设过O,C,D三点抛物线的解析式为y=ax2+bx.
∴ 64a+8b=0 (24/5)²a+24/5b=12/5 解a=-5/32 b=5/4 y=-5/32x²+5/4x
(3)∵抛物线的对称轴为x=4,
∴其顶点坐标为(4,5/2) .
设直线AC的解析式为y=kx+b,
则 8k+b=0 b=-4解之,得k=1/2 b=-4
∴ y=1/2x-4.
设直线FP交直线AC于H(m,1/2m-4),过H作HM⊥OA于M.
∴△AMH∽△AOC.
∴HM:OC=AH:AC.
∵S△FAH:S△FHC=1:3或3:1,
∴AH:HC=1:3或3:1,
∴HM:OC=AH:AC=1:4或3:4.
∴HM=2或6,
即m=2或6.
∴H1(2,-3),H2(6,-1).
直线FH1的解析式为y=11/4 x-17/2 .
当y=-4时,x=18/11 .
直线FH2的解析式为y=-7/4x+19/2 .
当y=-4时,x=54/7 .
∴当t=18/11 秒或54/7 秒时,
直线FP把△FAC分成面积之比为1:3的两部分.
再问: 对不起,我没学过相似三角形,有其他方法吗?
再答: 那你做这个题就超前了 ,这题就是用相似做。
再问: 这是元培中学上一届初三期中考题,老师让我们做的。老师没说这题不能做,会不会有别的做法。
再答: 初三好像有学相似,不过你先写上去,估计你们快讲到了
再问: 算了,还是不写吧,本来就没学过,要下节课才学,现在做了算什么,我们老师查这个查很严的,严禁抄袭。
四边形OABC是矩形,OA=2,OC=4,将矩形OABC沿直线AC折叠.使点B落在D处,AD交OC于E.
如图,把矩形纸片OABC放入平面直角坐标系中,使OA,OC分别落在x轴、y轴上,连接AC,将矩形纸片OABC沿AC折叠,
在矩形OABC中,AO=10,AB=8,沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的E处,分别以OC、OA
如图,把矩形纸片oabc放入平面直角坐标系中,使oa,oc分别落在x,y轴上,连接ac,将纸片oabc沿ac折叠,使点
如图9,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形.OA=6 OC=4 P在Bc上
如图,将矩形纸片OABC放在平面坐标系内,OA、OC分别与x轴、y轴重合,OA=8,OC=4,将点B折叠到点O,折痕为E
如图.矩形纸片OABC放在平面直角坐标系内 OA,OC分别与X轴 Y轴重合 OA=8 OC=4 将点B折叠到点O 折痕为
如图,把矩形纸片OABC放如平面直角坐标系中,使OA,OC分别落在X轴,Y轴上,连结OB,将纸片OABC沿OB折叠,使A
如图.把矩形纸片OABC 放入平面直角坐标系中,使OA、OC分别落在x轴、y轴,连接OB,将纸片OABC沿OB折叠,使
如图,把一矩形纸片OABC放入平面直角坐标系中,使OA,OC分别落在X轴,Y轴上,连接OB,将纸片OABC沿OB折叠,使
如图,把一个矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连接OB,将纸片OABC沿OB折叠,
如图,在平面直角坐标系中,四边形OABC为矩形,OA=3,OC=4,P为直线AB上一动点,将直线OP绕点P逆时针方向