如图,点A是△ABC和△ADE的公共顶点,∠BAC+∠DAE=180°,AB=AE,AC=AD,点M是DE的中点,直线A
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/14 00:35:56
如图,点A是△ABC和△ADE的公共顶点,∠BAC+∠DAE=180°,AB=AE,AC=AD,点M是DE的中点,直线AM交直线BC于点N.将△ADE绕点A旋转,在旋转的过程中,请探究∠ANB与∠BAE的数量关系,并加以证明.
∠ANB+∠BAE=180°.
证明:延长AM到F,使MF=AM,连接DF、EF.
∵点M是DE的中点,
∴DM=ME,
∴四边形ADFE是平行四边形,
∴AD∥FE,AD=EF,
∴∠DAE+∠AEF=180°,
∵∠BAC+∠DAE=180°,
∴∠BAC=∠AEF,
∵AC=AD,
∴AC=EF,
在△ABC与△EAF中,
∵
AC=EF
∠BAC=∠AEF
AB=AE,
∴△ABC≌△EAF,
∴∠B=∠EAF,
∵∠ANB+∠B+∠BAF=180°,
∴∠ANB+∠EAF+∠BAF=180°,
即∠ANB+∠BAE=180°.
证明:延长AM到F,使MF=AM,连接DF、EF.
∵点M是DE的中点,
∴DM=ME,
∴四边形ADFE是平行四边形,
∴AD∥FE,AD=EF,
∴∠DAE+∠AEF=180°,
∵∠BAC+∠DAE=180°,
∴∠BAC=∠AEF,
∵AC=AD,
∴AC=EF,
在△ABC与△EAF中,
∵
AC=EF
∠BAC=∠AEF
AB=AE,
∴△ABC≌△EAF,
∴∠B=∠EAF,
∵∠ANB+∠B+∠BAF=180°,
∴∠ANB+∠EAF+∠BAF=180°,
即∠ANB+∠BAE=180°.
已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=α,且点B,A,D在一条直线上,连
已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接B
已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接B
解一道几何题,当中的已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=α,且点B,A
如图,在三角形ABC和三角形ADE中,AB=AC,AD=AE,∠BAC=∠DAE,点C在DE上.
△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B、A、D在一条直线上,连接BE、CD;M,N分别
已知在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B、A、D在一条直线上,连接BE、CD;M,
如图,在△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,CE与BD相交于点M,BD交AC于点N
如图,在△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=90°,∠DAE=90°,点BCD在同一条直线上
如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°,点B,C,D在同一条直线上,求证BD=
如图,在△ABC和△ADE中,∠BAC=∠DAE=90°,点B,C,E在一条直线上,并且AC=AB,AD=AE.
已知:如图1所示,在△ABC和△ADE中,AB=AC,AD=AE,角BAC=角DAE,且点B,A,D在一条直线