已知二次函数f(x)=ax^2+bx+c若f(x)+f(x+1)=2x^2-2X+13
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 23:48:18
已知二次函数f(x)=ax^2+bx+c若f(x)+f(x+1)=2x^2-2X+13
(1)求函数f(x)的解析式
(2)当x∈[1,3]时,求f(x)的反函数
(3)当x∈[t,5]时,求函数f(x)的最大值
(1)求函数f(x)的解析式
(2)当x∈[1,3]时,求f(x)的反函数
(3)当x∈[t,5]时,求函数f(x)的最大值
第(2)问自己做,(1),(3)答案如下:
分析:(1)由f(x+1)=a(x+1)2+b(x+1)+c,得到f(x)+f(x+1)=2ax2+(2a+2b)x+a+b+2c=2x2-2x+13,由此求出a,b,c的值,从而得到函数f(x)的解析式.
(3)x∈[t,5],f(x)=x2-2x+7=(x-1)2+6,当-3≤t≤5时,函数f(x)的最大值为f(5)=f(-3)=9+6+7=22.当t<-3时,函数f(x)的最大值为f(t)=(t-1)2+6.
(1)f(x)+f(x+1)=ax2+bx+c+a(x+1)2+b(x+1)+c=2ax2+(2a+2b)x+a+b+2c
∵f(x)+f(x+1)=2x2-2x+13∴2a=22a+2b=-2a+b+2c=13∴a=1b=-2c=7∴f(x)=x2-2x+7
(3)∵x∈[t,5],f(x)=x2-2x+7=(x-1)2+6,
∴当-3≤t≤5时,函数f(x)的最大值为f(5)=f(-3)=9+6+7=22.
当t<-3时,函数f(x)的最大值为f(t)=(t-1)2+6.
∴f(x)max=22,-3≤t≤5(t-1)2+6,t<-3.
分析:(1)由f(x+1)=a(x+1)2+b(x+1)+c,得到f(x)+f(x+1)=2ax2+(2a+2b)x+a+b+2c=2x2-2x+13,由此求出a,b,c的值,从而得到函数f(x)的解析式.
(3)x∈[t,5],f(x)=x2-2x+7=(x-1)2+6,当-3≤t≤5时,函数f(x)的最大值为f(5)=f(-3)=9+6+7=22.当t<-3时,函数f(x)的最大值为f(t)=(t-1)2+6.
(1)f(x)+f(x+1)=ax2+bx+c+a(x+1)2+b(x+1)+c=2ax2+(2a+2b)x+a+b+2c
∵f(x)+f(x+1)=2x2-2x+13∴2a=22a+2b=-2a+b+2c=13∴a=1b=-2c=7∴f(x)=x2-2x+7
(3)∵x∈[t,5],f(x)=x2-2x+7=(x-1)2+6,
∴当-3≤t≤5时,函数f(x)的最大值为f(5)=f(-3)=9+6+7=22.
当t<-3时,函数f(x)的最大值为f(t)=(t-1)2+6.
∴f(x)max=22,-3≤t≤5(t-1)2+6,t<-3.
已知二次函数f(x)=ax^2+bx+c,若f(x)+f(x+1)=2x^2-2x+13 求函数f(x)的解析式
已知二次函数f(x)=ax^2+bx+c
已知二次函数f(x)=ax^2+bx+c,若不等式f(x)
已知二次函数f(x)=ax^2+bx+c若f(x)+f(x+1)=2x^2-2X+13,求当t《=x
已知二次函数f(x)=ax^2+bx+c,且不等式f(x)
已知二次函数f(x)=ax平方+bx=c,f(-2)=f(0)=0,f(x)的最小值为-1
已知二次函数,f(x)=ax²+bx+c(a≠0)求证:方程f(x)=1/2[f(0)+f(1)]有两个不相等
已知二次函数f(x)=ax^2+bx+c,(1)若f(-1)=0,试判断f(x)零点个数
已知函数f(x)=ax^2+bx+1(a,b为实数),x属于R,F(x)={f(x),x>0 -f(x),x
二次函数f(x)=ax^2+bx+c若f(x)<0的解集是{x|1<x<3},函数在[-1,3]
已知二次函数f(x)=ax^2+bx+1(a>0),F(x)={f(x) (x>0)-f(x)(x<0)},若f(-1)
设二次函数f(x)=ax∧2+bx+c,满足f(x+1)=2x+f(x)