作业帮 > 数学 > 作业

过点F(0,1)作直线l与抛物线x2=4y相交于两点A、B,圆C:x2+(y+1)2=1

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 01:28:04
过点F(0,1)作直线l与抛物线x2=4y相交于两点A、B,圆C:x2+(y+1)2=1

(1)若抛物线在点B处的切线恰好与圆C相切,求直线l的方程;
(2)过点A、B分别作圆C的切线BD、AE,试求|AB|2-|AE|2-|BD|2的取值范围.
过点F(0,1)作直线l与抛物线x2=4y相交于两点A、B,圆C:x2+(y+1)2=1
(1)设A(x1,y1),B(x2,y2
由x2=4y,得y/=
1
2x,则过点B的切线方程为:
x2
2x−y+y2−

x22
2=0
由已知:点B处的切线恰好与圆C相切,y2=

x22
4
∴x2=±2
3,y2=3,即点B坐标为(±2
3,3),
∴直线l的方程为:y=±

3
3x+1
(Ⅱ)
法一:由已知,直线l的斜率存在,则设直线l的方程为:y=kx+1,
联立x2=4y,得x2-4kx-4=0,∴x1+x2=4k,x1x2=-4
∴x12+x22=16k2+8
∴|AB|2-|AE|2-|BD|2=(-2-2k2)x1x2-4k(x1+x2)-6=-8k2+2≤2
∴|AB|2-|AE|2-|BD|2的取值范围是(-∞,2]
法二:根据题意,连接AC、AB﹑EC﹑ED.设直线l的方程为:y=kx+1,
联立x2=4y可得x2-4kx-4=0,∴x1+x2=4k,x1x2=-4
|AE|2=|AC|2-|EC|2=x12+(y1+1)2-1.
同理,|BD|2=x22+(y2+1)2-1.
又|AB|2=(y1+y2+2)2
∴|AB|2-|AE|2-|BD|2=2x1x2+4(x1+x2)-(y12+y22)-2(y1+y2)+4=-8k2+2≤2.
∴|AB|2-|AE|2-|BD|2的取值范围是(-∞,2]
过定点P(1,4)作直线交抛物线C:y=2x2于A、B两点,过A、B分别作抛物线C的切线交于点M,则点M的轨迹方程为__ 已知过点A(-1,0)的动直线l与圆C:x2+(y-3)2=4相交于P、Q两点,M是PQ中点,l与直线m:x+3y+6= 已知过点A(-1,0)的动直线l与圆C:x2+(y-3)2=4相交于P、Q两点,M是PQ的中点,l与直线m:x+3y+6 过抛物线x2=4y焦点F的直线l与抛物线交于A,B两点点C(0,t)(t>1).若|AB|∈(9 /2 ,64 /7 ) 已知抛物线y^2=4x,过点M(-1,0)作一条直线l与抛物线相交于不同的两点A,B,点A关于x轴对称点为C,求证直线B 设抛物线x2=12y的焦点为F,经过点P(2,1)的直线l与抛物线相交于A、B两点且点P恰为AB的中点,则|AF|+|B 已知点P(x,y)满足x+y≤4y≥xx≥1,过点P的直线l与圆C:x2+y2=14相交于A、B两点,则AB的最小值为 设抛物线x2=4y的焦点为F,经过点P(1,4)的直线l与抛物线相交于A、B两点,且点P恰为AB的中点, 设抛物线x2=12y的焦点为F,经过点P(2,1)的直线l与抛物线相交于A、B两点,若点P恰为线段AB的中点,则|AF| 已知抛物线C:y^2=4x,F是C的焦点,过点F的直线l与C相交于A、B两点.(1)设l的斜率为1,求向量OA和向量OB 已知抛物线x2=-4y,过点M(0,-4)的直线与抛物线相交于A,B两点,(1)求证以AB为直径的圆过原点O (2009•淮安模拟)已知过点A(-1,0)的动直线l与圆C:x2+(y-3)2=4相交于P,Q两点,M是PQ中点,l与