x
解析:如图: 延长F 1D与F 2A交于B,连接DO, 可知DO= 1 2F 2B=a=2, ∴动点D的轨迹方程为x 2+y 2=4. 故答案为x 2+y 2=4.
设F1,F2为椭圆x24+y23=1左、右焦点,过椭圆中心任作一条直线与椭圆交于P,Q两点,当四边形PF1QF2面积最大
过椭圆x2/a2+y2/b2=1的左焦点F1作x轴的垂线交椭圆于A,B两点,F2为右焦点,若三角形ABF2是正三角形,
已知F1、F2分别为椭圆C:x24+y23=1的左、右焦点,点P为椭圆C上的动点,则△PF1F2的重心G的轨迹方程为(
过椭圆x2/a2+Y2/B2=1的左焦点F1作x轴的垂线交椭圆与P,F2为右焦点,若角F1PF2=60° 则椭圆的离心率
过椭圆x2/a2+Y2/B2=1的左焦点F1作x轴的垂线交椭圆与P,F2为右焦点,若角PF2F1=30°,求椭圆的离心率
椭圆X2/a2+y2/b2=1(a>b>0)的左焦点F1作X轴的垂线叫椭圆于点P,F2为右焦点若∠F1PF2=60,则椭
已知F1,F2是双曲线C:x^2/4-y^2/12=1的左、右焦点,A是双曲线上动点,过F1作∠F1AF2的平分线的垂线
以椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左焦点F1作x轴的垂线与椭圆交于点P,F2为右焦点,角F1PF2
已知椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1、F2,过F1作倾斜角为30°的直线与椭圆有一个交点P
已知椭圆x^2/4 +y^2/3=1的左、右焦点分别为F1、F2,过F1作倾斜角为45°的直线交椭圆于A、B两点,求AB
已知椭圆方程为(x^2)/16+(y^2)/9=1的左、右焦点分别为F1、F2,过左焦点F1的直线交椭圆于A、B两点.求
已知椭圆方程为x2/16+y2/9=1的左,右焦点分别为F1,f2,过左焦点F1的直线交椭圆于A,b两点,球三角形ABF
|