证a1=(1,3,5),a2=(6,3,2),a3=(3,1,0)为R^3的一个基,并求向量a=(3,8,13),B=(
a1=(1,2,3,4),a2+a3=(0,1,2,3)a1,a2,a3是四元线性方程组AX=b的三个解向量,r(A)=
已知向量组a1,a2,a3,a4,A=(a1,a2,a3),B=(a2,a3,a4,R(A)=2,R(B)=3,证明a1
向量组(1)a1,a2,a3(2)a1,a2,a3,a4(3)a1,a2,a3,a5 R(1)=R(2)=3,R(3)=
a1a2a3a4为n元向量且r(a1,a2,a3)=2r(a2,a3,a4)=3证明 a1能由[a2,a3]线性表出 a
设A3的列向量组为a1,a2,a3,且|A|=3,B=(2a1+a3,a3,a2),则|B|=?
设a1,a2,a3均为3维列向量,矩阵A=(a1,a2,a3)并且|A|=1,B=(a1+a2+a3,a1+2a2+4a
方程组Ax=b,A的秩为3,a1,a2,a3.a1的解向量为a1=(1,0,1,2)求通解2a1+a3=
三阶方阵A=(a1,a2 a3),其中aj=(1,2,3)为A的列向量,若B=|a1+2a2,a2+3a3,a3|=8,
如果向量组A a1,a2,a3 B a1.a2.a3.a4 C a1 a2 a3 a5 又RA=RB=3 RC=4证明R
a1=[1 2 3],求非零向量a2,a3,使a1,a2,a3为正交向量组
设a1,a2,a3均为3维列向量,记矩阵A=(a1,a2,a3)B=(a1+a2+a3,a1+2a2+2a3,a1+3a
设矩阵A=[a1.a2.a3.a4],其中a2.a3.a4线性无关,a1=2a3-3a4.向量b=a1+2a2+3a3+