作业帮 > 数学 > 作业

设α1,α2和β都是N维实向量,k1,k2是任意实数.如果β分别与α1,α2正交,证明β必与k1α1+k2α2正交.

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 21:01:19
设α1,α2和β都是N维实向量,k1,k2是任意实数.如果β分别与α1,α2正交,证明β必与k1α1+k2α2正交.
设α1,α2和β都是N维实向量,k1,k2是任意实数.如果β分别与α1,α2正交,证明β必与k1α1+k2α2正交.
β分别与α1,α2正交,即β·α1=0,β·α2=0
而β·(k1α1+k2α2)=k1β·α1+k2β·α2
=0+0=0
所以β与k1α1+k2α2正交