(黄石中考题)△ABC中点O是AC上一个动点,过点O作直线MN∥BC设MN交角BCA的角平分线交角BCA的外角角平分线
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 15:15:30
(黄石中考题)△ABC中点O是AC上一个动点,过点O作直线MN∥BC设MN交角BCA的角平分线交角BCA的外角角平分线
这个是图
(1试说明;EO=FO
(2)当点O运动到何处时,四边形AECF是矩形?并证明
(3)在(2)的基础上,△ABC满足什么条件时,四边形AECF能成为正方形
这个是图
(1试说明;EO=FO
(2)当点O运动到何处时,四边形AECF是矩形?并证明
(3)在(2)的基础上,△ABC满足什么条件时,四边形AECF能成为正方形
1、证明:在BC的延长线上取点D
∵CE平分∠ACB
∴∠ACE=∠BCE
∵CF平分∠ACD
∴∠ACF=∠DCF
∵MN∥BC
∴∠OEC=∠BCE,∠OFC=∠DCF
∴∠ACE=∠OEC,∠ACF=∠OFC
∴OE=OC,OF=OC
∴OE=OF
2、当O运动到AC的中点时,AECF是矩形
证明:
∵O是AC的中点
∴AO=CO
∵OE=OF
∴平行四边形AECF
∵CE平分∠ACB
∴∠ACE=∠ACB/2
∵CF平分∠ACD
∴∠ACF=∠ACD/2
∴∠ECF=∠ACE+∠ACF=∠ACB/2+∠ACD/2=(∠ACB+∠ACD)/2=180/2=90
∴矩形AECF
3、△ABC为直角三角形,∠ACB=90时,四边形AECF是正方形
证明:
∵∠ACB=90
∴∠ACD=90
∵CE平分∠ACB
∴∠BCE=∠ACB/2=45
∵CF平分∠ACD
∴∠DCF=∠ACD/2=45
∵MN∥BC
∴∠OEC=∠BCE=45,∠OFC=∠DCF=45
∴∠OEC=∠OFC
∴CE=CF
∵矩形AECF
∴正方形AECF
∵CE平分∠ACB
∴∠ACE=∠BCE
∵CF平分∠ACD
∴∠ACF=∠DCF
∵MN∥BC
∴∠OEC=∠BCE,∠OFC=∠DCF
∴∠ACE=∠OEC,∠ACF=∠OFC
∴OE=OC,OF=OC
∴OE=OF
2、当O运动到AC的中点时,AECF是矩形
证明:
∵O是AC的中点
∴AO=CO
∵OE=OF
∴平行四边形AECF
∵CE平分∠ACB
∴∠ACE=∠ACB/2
∵CF平分∠ACD
∴∠ACF=∠ACD/2
∴∠ECF=∠ACE+∠ACF=∠ACB/2+∠ACD/2=(∠ACB+∠ACD)/2=180/2=90
∴矩形AECF
3、△ABC为直角三角形,∠ACB=90时,四边形AECF是正方形
证明:
∵∠ACB=90
∴∠ACD=90
∵CE平分∠ACB
∴∠BCE=∠ACB/2=45
∵CF平分∠ACD
∴∠DCF=∠ACD/2=45
∵MN∥BC
∴∠OEC=∠BCE=45,∠OFC=∠DCF=45
∴∠OEC=∠OFC
∴CE=CF
∵矩形AECF
∴正方形AECF
在三角形ABC中,点O是AC上一个动点,过点O作直线MN平行于BC,设MN交角BCA的平分线CE于点E,交角BCA的外角
在三角形ABC中,点O是AC上一个动点,过点O作直线MN平行于BC,设MN交角BCA的平分线于点E,交角BCA的外角平分
在三角形ABC中,点O是AC边上的一个动点,过点O作直线MN平行BC,设MN交角BCA的角平分线于点E,交角BCA的外角
三角形ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交角BCA的平分线于点E,交角BCA的外角平分线
如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN‖BC,设MN交角BCA的平分线于点E,交角BCA的外角平
三角形ABC中,O是AC边上的一个动点,过O作直线MN//BC,设MN交角BCA的平分线于E,交角BCA的外角平分线于F
如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN‖BC,设MN交角BCA的平分线于点E,交△ABC的外角角A
如图,在三角形ABC中,点O是AC边上的一个动点,过点O做直线MN平行BC,设MN交角BCA的角平分线于点E,交角BCA
如图,在三角形ABC中,点O是AC边上的一个动点,过点O作直线MN//BC,设MN交角BCA的平分线于点E,交角BCA的
如图所示,在三角形ABC中,点O是AC边上一个动点,过点O作直线MN//BC.设MN交角BCA的平分线于点E,交角BCA
如图,在三角形ABC中,点O是Ac边上的一个动点,过点0作直线MN平行于BC,设MN交角BCA的平分线干点E,交角BCA
如图,三角形ABC中,点O是AC上一个动点,过点O作直线MN//BC,设MN交角BCA的平分线于点E,交