作业帮 > 数学 > 作业

实对称矩阵,矩阵函数,可微函数,特征值,证明.

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 12:09:05
实对称矩阵,矩阵函数,可微函数,特征值,证明.

 
实对称矩阵,矩阵函数,可微函数,特征值,证明.
如果给一个对称矩阵,那么它的特征值都是实数,而且它的特征向量相互正交.这个定理的相关证明你可以参考任何一本线性代数的教科书.这个定理中的一个结论是证明这个命题的关键.
如果这个对称阵的所有元素都是可微函数,而且特征值又互不相等,那么求解这些特征值的方程总可以写成一个多项式方程,(λ-c_1)(λ-c_2).(λ-c_n)=0,并且有解.这些系数 c_i 都是实数(由定理),不会涉及复函数,所以这些系数无非是元素a_ij的线性组合,因此特征值λ会继承元素a的可微性质.