设函数 φ (x)连续且满足 φ (x)=e^x+ ∫(x,0)(t-x) φ(t)dt,求φ(x)
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 11:31:51
设函数 φ (x)连续且满足 φ (x)=e^x+ ∫(x,0)(t-x) φ(t)dt,求φ(x)
φ (x)=e^x+ ∫[0→x] (t-x) φ(t)dt
=e^x+ ∫[0→x] tφ(t)dt-x∫[0→x] φ(t)dt
两边对x求导得:
φ'(x)=e^x+ xφ(x)-∫[0→x] φ(t)dt-xφ(x)
=e^x-∫[0→x] φ(t)dt (1)
两边再对导:
φ''(x)=e^x-φ(x),即:φ''(x)+φ(x)=e^x,二阶常系数非齐次线性微分方程
将x=0代入原方程:φ(0)=1
将x=0代入(1)得:φ'(0)=1,这是初始条件
首先解齐次方程的解,特征方程为:r²+1=0,r=±i
齐次方程的通解为:C1cosx+C2sinx
设特解为:y*=ke^x,代入微分方程得:ke^x+ke^x=e^x,则k=1/2
因此微分方程的通解为:y=C1cosx+C2sinx+(1/2)e^x
将初始条件φ(0)=1,φ'(0)=1代入得:
1=C1+1/2
1=C2+1/2
得:C1=1/2,C2=1/2
因此φ(x)=(1/2)cosx+(1/2)sinx+(1/2)e^x
=e^x+ ∫[0→x] tφ(t)dt-x∫[0→x] φ(t)dt
两边对x求导得:
φ'(x)=e^x+ xφ(x)-∫[0→x] φ(t)dt-xφ(x)
=e^x-∫[0→x] φ(t)dt (1)
两边再对导:
φ''(x)=e^x-φ(x),即:φ''(x)+φ(x)=e^x,二阶常系数非齐次线性微分方程
将x=0代入原方程:φ(0)=1
将x=0代入(1)得:φ'(0)=1,这是初始条件
首先解齐次方程的解,特征方程为:r²+1=0,r=±i
齐次方程的通解为:C1cosx+C2sinx
设特解为:y*=ke^x,代入微分方程得:ke^x+ke^x=e^x,则k=1/2
因此微分方程的通解为:y=C1cosx+C2sinx+(1/2)e^x
将初始条件φ(0)=1,φ'(0)=1代入得:
1=C1+1/2
1=C2+1/2
得:C1=1/2,C2=1/2
因此φ(x)=(1/2)cosx+(1/2)sinx+(1/2)e^x
设f(X)连续且满足 f(x)=e^x+sinx- ∫ x 0 (x-t)f(t)dt,并求该函数f(x)
设f(x)连续,且满足f(x)=e^x+∫x上0下(t-x)f(t)dt 求f(x)
设f(x)连续,且满足f(x)=e^x+∫(0,x)tf(x-t)dt,求f(x)
设当x>0时,函数f(x)连续且满足f(x)=x+∫(1,x)1/xf(t)dt,求f(x)
设函数f(x)具有连续的导数且满足方程,∫(0-x)(x-t+1)f'(t)dt=x^2+e^x-f(x),求f(x)
设f(x)具有连续导数,且满足f(x)=x+∫(上x下0)tf'(x-t)dt求lim(x->-∞)f(x)
设函数f(x)可导,且满足f(x)-∫(上限为x,下限为0)f(t)dt=e^x,求f(x) 需要详解,
设函数y=y(x)连续可微,且满足x∫(0,x)y(t)dt=(x+1)∫(0,x)y(t)dt,求y(x)
数学φ(x)=∫(0~2x)t(e^t)dt…求φ'(x)
设f(x)为连续函数,且符合关系f(x)=e^x-∫(0,x)(x-t)f(t)dt,求函数f(x)
设函数F(X)具有二阶连续导数,且满足F(X)=[微分(上限X下限0)F(1-t)dt]+1,求F(X)
设连续函数f(x)满足f(x)=e^x-∫(0,x)f(t)dt,求f(x)