作业帮 > 数学 > 作业

已知线段PQ过三角形ABO的重心G,分别在OA、OB上设OA=a,OB=b,OP=ma,OQ=nb,求证:1/m+1/n

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 04:56:59
已知线段PQ过三角形ABO的重心G,分别在OA、OB上设OA=a,OB=b,OP=ma,OQ=nb,求证:1/m+1/n=3
OA,OB,OP,OQ,a,b都是向量
已知线段PQ过三角形ABO的重心G,分别在OA、OB上设OA=a,OB=b,OP=ma,OQ=nb,求证:1/m+1/n
PGQ三点共线,所以OG=xOP+(1-x)OQ=xma+(1-x)nb
OG=1/3(a+b)(重心相关推论)
所以对应项对应系数等 xma=1/3a (1-x)nb=1/3b
1/m=3x 1/n=3-3x 所以结论