把矩形OABC放置在直角坐标系中,OA=6,OC=8,若将矩形折叠,使点B与O重合,得到折痕EF.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 02:19:49
把矩形OABC放置在直角坐标系中,OA=6,OC=8,若将矩形折叠,使点B与O重合,得到折痕EF.
求:(1)点E坐标
(2)若直线l把矩形OABC的面积分成相等的两部分,求直线l必经过点的坐标
矩形OABC在第一象限:
O为原点,C,F在Y轴上,A在X轴上
求:(1)点E坐标
(2)若直线l把矩形OABC的面积分成相等的两部分,求直线l必经过点的坐标
矩形OABC在第一象限:
O为原点,C,F在Y轴上,A在X轴上
连OE,
1)设AE=x,由题意,得OE=BE,则BE=8-x,
在直角三角形OAE中,由勾股定理,得:
OE^2=OA^2+AE^2,
即(8-x)^2=6^2+x^2,
解得x=7/4,
所以E(6,7/4)
2)对角线OB,AC的交点为M(3,4),
若直线l把矩形OABC的面积分成相等的两部分,直线l必经过点M(3,4)
1)设AE=x,由题意,得OE=BE,则BE=8-x,
在直角三角形OAE中,由勾股定理,得:
OE^2=OA^2+AE^2,
即(8-x)^2=6^2+x^2,
解得x=7/4,
所以E(6,7/4)
2)对角线OB,AC的交点为M(3,4),
若直线l把矩形OABC的面积分成相等的两部分,直线l必经过点M(3,4)
如图,吧矩形OABC放置在直角坐标中,OA=6,OC=8,若将矩形折叠,使点B与O重合,得到折痕EF.①求点E的坐标;②
如图所示,把矩形OABC放置在直角坐标系中,OA=6,OC=8,若将矩形折叠,使点B与点O重合.(很抱歉图没有)
如图.矩形纸片OABC放在平面直角坐标系内 OA,OC分别与X轴 Y轴重合 OA=8 OC=4 将点B折叠到点O 折痕为
如图,将矩形纸片OABC放在平面坐标系内,OA、OC分别与x轴、y轴重合,OA=8,OC=4,将点B折叠到点O,折痕为E
将矩形ABCO的两边OA,OC放置在直角坐标系中,OA=4,OC=四倍根号三 将角B折叠与对角线AC上的点D处,折痕
在矩形ABCD中,AB=6,BC=8,若将矩形折叠使点B与点D重合,求折痕EF的长.
如图,矩形ABCD中,AB=6cm,BC=8cm,若将矩形折叠,使点B与D重合,求折痕EF的长.
如图,把矩形OABC放置在平面直角坐标系中,OA=6,OC=8.
如图1,矩形OABC中,AB=8,OA=4,把矩形OABC对折,使点B与点O重合,点C移到点F位置,折痕为DE.
如图,将矩形OABC放置在平面直角坐标系中,点D在边OC上,点E在边OA上,把矩形沿直线DE翻折,使点O落在边AB上的点
如图,在矩形ABCD中,AB=6,BC=8,若将矩形折叠,使B点与D点重合,则折痕EF的长为( )
如图在矩形ABCD中,AB=6cm,BC=8cm,若将矩形折叠,使B点与D点重合,则折痕EF的长为多少?