设t1,t2,...,tn是互不相同的数,证明向量组ai=(1,ti,ti^2,...,ti^n-1)(i=1,2,..
设f(x)在[a,b]上连续,x1,x2,x3.xn∈[a,b],且t1+t2+t3+.+tn=1,ti>0,i=
证明:若函数f(x)在[a,b]上连续,x1,..,xn属于[a,b]且t1+...+tn=1 ti>0(i=1,...
已知a1,a2,…,as是互不相同的数,n维向量ai=(1,ai,ai^2,…,ai^n-1)^T(i=1,2,…,s)
设t1,t2,t3为互不相等的常数,讨论向量组a1=(1,t1,t1的平方)a2=(1,t2,t2的平方)a3=(1,t
设{an}为等比数例,Tn=na1+(n-1)a2…+2an-1+an,已知T1=1,T2=4,
设{an}为等比数列,Tn=na1+(n-1)a2+.+2an-1+an,已知T1=1,T2=4,T2怎么等于2*a1+
将tn-1*tn+1=tn*tn+5转换成为递推式,已知t1=1,t2=2
若数列an的通项an=2n-1设数列bn的通项bn=1+1/an记Tn是数列bn前n项积(1)求T1,T2,T3的值(2
2ti
ti
设a1,a2,...an.是n唯欧式空间R的一组基,证明,向量(b1,ai)=(b2,ai),(i=1,2...n.)则
请证明:从静止开始通过连续相等的位移所用时间的比值为 t1:t2:t3:…:tn = 1:(√2-1):…:(√n-√n