曲线积分证明题含参数曲线积分F(y)=∫(1,+∞){dx/(3√(x^4+y^2 ))},在实数域上连续(维斯特拉斯判
【高数】定积分 设f(x)连续,f(0)=1,则曲线y=∫(上限x,下限0) f(x)dx 在(0
证明曲线积分与路径无关:∫(x+y)dx+(x-y)dy {积分上限(2,3),下线(1,1)} 在整个xoy
计算曲线积分 ∫(x^2-y^2)dx,其中l是曲线y=x^2上从点(0,0)到点(2,4)的一段弧
设曲线y=f(x)在点(1,2)处的斜率为3,且该曲线通过原点,求定积分∫xf``(x)dx(上线1,下线0)
证明曲线积分∫(xy^2-y^3)dx+(x^2y-3xy^2)dy与路径无关,并计算积分
定积分的证明设y=f(x)及y=g(x)在[a,b]上连续.证明: (∫f(x)g(x)dx)^2=0左端的被积函数展开
第二型曲线积分∫(x^2+y^2)dx+(x^2-y^2)dy,其中C为曲线y=1- |1-x|(0
如图,曲线段方程是y=f(x),函数f(x)在区间【0,a】上有连续的导数,则定积分 0到a:xf'(x)dx等于曲边三
证明:曲线积分∫L(2xy-y^4+3)dx+(x^2-4xy^3)dy在xoy平面内与路径无关,并计算积分值,其中L为
设Γ为曲线x=t,y=t^2,z=t^3上相应于t从0变为1的曲线弧.第二类曲线积分∫P(x,y,z)dx+Q(x,y,
求解一道曲线积分的题∫c (y+sinx)dx + (z^2+cosy)dy +x^3dzc是曲线 r(t)=sint
曲线积分封闭曲线∫(x²y-2y)dx+(x三次方/3-x)dy,L为一直线x=1,y=x,y=2x为边的三角