作业帮 > 数学 > 作业

过点P(-1,-2)的直线l分别交x的负半轴和y的负半轴于AB两点

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 01:59:15
过点P(-1,-2)的直线l分别交x的负半轴和y的负半轴于AB两点
(1)当PA·PB最小时,求l的方程
(2)设三角形AOB的面积为S,讨论这样的直线l的条数
过点P(-1,-2)的直线l分别交x的负半轴和y的负半轴于AB两点
设该直线斜率为k,方程即为y=k*(x+1)-2
其与坐标轴交点为A (2-k/k,0) B(0,k-2)
则有PA*PB=√(8+4/(k^2)+4k^2)(这是化简后的,中间步骤……呵呵……就不写了)
又因为k^2大于,用基本不等式可得4/(k^2)+4k^2大于等于2*√(4*4)即8
所以PA*PB大于等于√(8+8)即4.
由基本不等式的性质,得当且仅当k为4/(k^2)=4k^2时即k为±1时有解.
由题意将k=1舍去.
K=-1
L方程y=-x-3
三角形面积?是△OAB吗?
如果是的话,解法如下:
由上一问得A (2-k/k,0) B(0,k-2)
由2-k/k k-2都小于0可得
三角形面积就为0.5*(k-2)*(2-k/k)=S
移项,整理为-k^2+(4-2S)*k-4=0
如果直线仅一条,则方程的k只有一个解.
方程判别式为0 (4—2S)^2-16=0 (得s为0或4,0舍去)
即s为4时,一条.
s大于4时,两条.(这个可能还要用根的分布说明一下,当s大于4时,k的两根都小于0)