作业帮 > 数学 > 作业

若某命题对n=2成立,且假设n=k(k大于等于2,k属于自然数)时命题成立可推证n=k+2时命题也成立,则一定有

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 03:08:15
若某命题对n=2成立,且假设n=k(k大于等于2,k属于自然数)时命题成立可推证n=k+2时命题也成立,则一定有
A该命题对所有整数都成立 B该命题对所有大于等于2的正整数都成立
C该命题对所有正偶数都成立 D该命题对所有正奇数都成立
还要写原因
答案是c为什么
若某命题对n=2成立,且假设n=k(k大于等于2,k属于自然数)时命题成立可推证n=k+2时命题也成立,则一定有
数学归纳法,最保险的k+2属於偶数.
一个与正整数n有关的命题,当n=2时成立,且若n=k时命题成立推出n=k+2时命题成立,则一定有 用数学归纳法证明p(n) 当n=1时命题成立 假设n=k成立 那么当n=k+2也成立 则使命题成立的n的值是? 某个命题与自然数n有关,若n=k(k∈N*)时命题成立,那么可推得当n=k+1时该命题也成立.现已知当n=5时,该命题不 一个关于自然数n的命题,如果n=1时命题正确,且假设n=k(k≥1)时命题正确,可以推出n=k+2时命题也正确,则( 一个与正整数n有关的命题,当n=2时成立,且由n=K时成立可推得n=K+2时也成立.() 完全归纳法的知识某个命题与正整数 n有关,若n=k (k∈N*) 时该命题成立,那么可推得当n=k+1时该命题也成立,现 在用数列归纳法证明命题成立的第(ii)步中,假设n=k时命题成立,这种假设有没有根据?如果有,根据是什么? 关于数学归纳法数学归纳法是这样的:(1)证明当n取第一个值时命题成立;(2)假设当n=k(k≥n的第一个值,k为自然数) 用数学归纳法证明:(a^n+b^n)/2>=[(a+b/2)]^n,a,b为非负实数,假设n=k时命题成立证明n=k+1 同余乘方证明证明:(应用数学归纳法证明)(1)当n=1时,命题显然成立;(2)假设当n=k时,a^k≡b^k (mod 用数学归纳法证明n(n+1)(2n+1)能被6整除时,由归纳假设推证n=k+1时命题成立,需将n=k+1时的原式表示成( 若正项数列{an}满足条件:存在正整数k,使得an+k/an=an/an-k对一切n属于N*,n大于k都成立,