已知asinˇθ+bcosˇθ=m,bsinφ+acosˇφ,atanθ=btanφ(a、b、m、n均不相等).求证1/
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 00:39:24
已知asinˇθ+bcosˇθ=m,bsinφ+acosˇφ,atanθ=btanφ(a、b、m、n均不相等).求证1/a+1/b=1/m+1/n
asin^2θ+bcos^2θ=m,得sin^2θ=(m-b)/(a-b),cos^2θ=(m-a)/(b-a) ( a、b、m、n均不相等);
bsin^2φ+acos^2φ=n,得 sin^2φ=(n-a)/((b-a); cos^2φ=(n-b)/(a-b)
atanθ=btanφ;a^2sin^2θ/cos^2θ=b^2sin^2φ/cos^2φ,
a^2/b^2=(m-a)(n-a)/(n-b)(m-b)=[mn-a(m+n)+a^2]/[mn-b(m+n)+b^2];
[mn-a(m+n)]/a^2=[mn-b(m+n)]/b^2
mn(1/a^2-1/b^2)=(m+n)(1/a-1/b);
1/a+1/b=1/m+1/n
bsin^2φ+acos^2φ=n,得 sin^2φ=(n-a)/((b-a); cos^2φ=(n-b)/(a-b)
atanθ=btanφ;a^2sin^2θ/cos^2θ=b^2sin^2φ/cos^2φ,
a^2/b^2=(m-a)(n-a)/(n-b)(m-b)=[mn-a(m+n)+a^2]/[mn-b(m+n)+b^2];
[mn-a(m+n)]/a^2=[mn-b(m+n)]/b^2
mn(1/a^2-1/b^2)=(m+n)(1/a-1/b);
1/a+1/b=1/m+1/n
已知x/acosθ+y/bsinθ=1,x/asinθ-y/bcosθ=1,则x^2/a^2+y^2/b^2=
已知非零实数a,b满足asinα+bcosα/acosα-bsinα=tan(α+π/6),则b/a的值为
已知实数a,b均不为零,asinα+bcosαacosα-bsinα=tanβ,且β-α=π6,则ba等于( )
已知sinα=asinβ,bcosα=acosβ,且α、β为锐角,求证:cosα=√{(a²-1)/(b&su
已知sinΦ=asinω,tanΦ=btanω,其中Φ为锐角,求证cosΦ=根号下(a^2-1)/(b^2-1)
已知asin(θ+α)=bsin(θ+β),求证
asinθ-bcosθ=根号a^2+b^2,(sin^2θ)/m^2+(cos^2θ)/n^2=1/(a^2+b^2)
高一三角函数证明题已知:sinθ=asinγ,tanθ=btanγ,其中θ为锐角,求证:cosθ=√[(a^2-1)/(
在三角形ABC中求证 aCOS A+bCOS B+cCOS C=2aSIN B SIN C
d=111.12cos{1/[sinΦAsinΦB十cosΦAcosΦBcos(λB—λA)]}
已知sinθ=αsinφ,tanθ=btanφ,其中θ为锐角,求证:cos=根号内 a的平方减1除以b的平方减一
asinθ+bcosθ=根号(a²+b²)×sin(θ+φ),其中tanφ=b/a.那么当原式取最大