已知向量a=(cos3x/2,sin3x/2),向量b=(cosx/2,-sinx/2),且x∈[0,π/2] 若f(x
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 07:22:15
已知向量a=(cos3x/2,sin3x/2),向量b=(cosx/2,-sinx/2),且x∈[0,π/2] 若f(x)=a·b-2λla+bl的最小值是
1.由已知得到|a|=1,|b|=1
所以|a+b|^2=|a|^2+2a*b+|b|^2=2+2[cos3x/2*cosx/2-sin3x/2*sinx/2]
=2+2cos2x
所以|a+b|=2|cosx|=2cosx
当向量a与向量b垂直时,a*b=0
即cos2x=0,从而2x=π/2
所以x=π/4.
2.f(x)=a*b-2λ|a+b|=cos2x-2λ*2cosx=cos2x-4λcosx
=2(cosx)^2-4λcosx-1
令t=cosx,则0≤t≤1,f(x)=2t^2-4λt-1
而f(x)的对称轴是x=λ,
若0≤λ≤1,则在t=λ时取得最小值,最小值为-2λ^2-1,解得λ=1/2,或λ=-1/2.
若λ≤0,则在t=0时取得最小值,最小值为-1,不符合
若λ≥1,则在t=1时取得最小值,最小值为1-4λ,则λ=5/8,不符合
综上有,入=1/2.
所以|a+b|^2=|a|^2+2a*b+|b|^2=2+2[cos3x/2*cosx/2-sin3x/2*sinx/2]
=2+2cos2x
所以|a+b|=2|cosx|=2cosx
当向量a与向量b垂直时,a*b=0
即cos2x=0,从而2x=π/2
所以x=π/4.
2.f(x)=a*b-2λ|a+b|=cos2x-2λ*2cosx=cos2x-4λcosx
=2(cosx)^2-4λcosx-1
令t=cosx,则0≤t≤1,f(x)=2t^2-4λt-1
而f(x)的对称轴是x=λ,
若0≤λ≤1,则在t=λ时取得最小值,最小值为-2λ^2-1,解得λ=1/2,或λ=-1/2.
若λ≤0,则在t=0时取得最小值,最小值为-1,不符合
若λ≥1,则在t=1时取得最小值,最小值为1-4λ,则λ=5/8,不符合
综上有,入=1/2.
已知向量a=(cos3x/2,sin3x/2),向量b=(cosx/2,-sinx/2),且x∈[0,π/2].若f(x
已知向量a=(cos3x/2,sin3x/2),b(cosx/2,-sinx/2),且x∈[0,x/2],若函数f(x)
已知向量a=(cos3x/2,sin3x/2),b=(cosx/2,—sinx/2),且x∈[0,π/2],f(x)=a
已知向量a=(cos3x/2,sin3x/2),b=(cosx/2,—sinx/2),且x∈[0,π/2],f(x)=a
已知向量a=(cos3x,sin3x)b=(cosx,sinx) ,x∈【-π/2,π/2】,且f(x)=ab,g(x)
已知向量a=(cos3x/2,-sin3x/2),b=(cosx/2,sinx/2),x∈[0,π/2],若函数f(x)
已知向量a=(cos3x/2,sin3x/2),b=(cosx/2,-sinx/2),且x∈[0,π/2]
已知向量a=(cos3x/2,sin3x/2),b=(cosx/2,-sinx/2),且x∈[0,π,2] 求:a·b及
已知向量a=(cos3x/2,sin3x/2),b=(cosx/2,sinx/2),x∈{0,π/2},求函数F(x)=
已知向量|a|=(cos3x/2,sin3x/2),|b|=(cosx/2,-sinx/2) 且x∈[0,π/2] 求①
已知向量a=(cos3x/2,sin3x/2),b=(cosx/2,-sinx/2),且x∈[-π/2,π/2].
已知向量a=(cos3x/2,sin3x/2),b=(cosx/2,-sinx/2),且x∈[-π/3,π/2].