双曲线的中心在原点,焦点f1,f2都在坐标轴上,离心率更号2,过点(4,-更号10)
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/20 03:40:41
双曲线的中心在原点,焦点f1,f2都在坐标轴上,离心率更号2,过点(4,-更号10)
(1)若直线kx-y-3k+m=0(k为参数)所过定点M恰在双曲线上,求证F1M垂直于F2M
(我算到x=3 y=m按我这个思路再怎么做)方程是x^2/6-y^2/6=1
(1)若直线kx-y-3k+m=0(k为参数)所过定点M恰在双曲线上,求证F1M垂直于F2M
(我算到x=3 y=m按我这个思路再怎么做)方程是x^2/6-y^2/6=1
双曲线方程你已经求好了,就是x²/6-y²/6=1,完全正确.
把直线方程kx-y-3k+m=0化为
(x-3)k-y+m=0,得出定点M(3,m),思路也正确,再往下算就行了.
将M的坐标代入x²/6-y²/6=1,得9/6-m²/6=1,得m²=3
由于 F1(-2√3,0),F2(2√3,0)
向量F1M=(3+2√3,m),F2M=(3-2√3,m)
F1M•F2M=(3+2√3)(3-2√3)+m²=9-12+3=0
所以 F1M垂直于F2M
把直线方程kx-y-3k+m=0化为
(x-3)k-y+m=0,得出定点M(3,m),思路也正确,再往下算就行了.
将M的坐标代入x²/6-y²/6=1,得9/6-m²/6=1,得m²=3
由于 F1(-2√3,0),F2(2√3,0)
向量F1M=(3+2√3,m),F2M=(3-2√3,m)
F1M•F2M=(3+2√3)(3-2√3)+m²=9-12+3=0
所以 F1M垂直于F2M
已知双曲线的中心在原点,焦点F1、F2在坐标轴上,离心率为根号2,且过点(4,-根号10).(1)求双曲线方程
已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为√2 ,且过点(4,-√10) 1'
已知双曲线的中心在原点,焦点F1和F2在坐标轴上,离心率为根号2,且过点(4,-根号10)
已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为根号2,且过点(4,-根号10).
已知双曲线的中心在原点.焦点F1,F2在坐标轴上,离心率为根号2,且过点(4,-根号10).
已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率是根号2,且过点(4,根号10)
(1/2)已知双曲线的中心在原点上,焦点F1,F2在坐标轴上,离心率为根号2,且过(4,-根号10).(1)求双曲...
已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为√2,且过(4,-√10).
已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为根号2,且过点(4,-根号10)点M(3,m)在双曲线上
已知双曲线的中心在原点,左右焦点F1,F2在坐标轴上,离心率为√2,且过点
已知双曲线的中心在原点,焦点f1,f2在坐标轴上,离心率为根2且过点(4...
已知双曲线中心在原点,焦点F1 ,F2 在坐标轴上,离心率e=根号2,且过点(4,根号10).(1)求双曲线的方程