数列、三角函数相关,1、若a1>0,a1≠1,a(n+1)=(2a n)/(1+a n)(n=1,2,…).(1)求证:
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 02:36:33
数列、三角函数相关,
1、若a1>0,a1≠1,a(n+1)=(2a n)/(1+a n)(n=1,2,…).(1)求证:a(n+1)≠a n;(2)令a1=1/2,写出a2,a3,a4,a5的值,观察并归纳出数列的通项公式;(3)求证:存在不等于零的常数p,使得{(a n+p)/a n}是等比数列,并求出公比q的值.
2、观察下列等式:tan(-45°)+tan(-60°)+tan(-75°)=tan(-45°)tan(-60°)tan(-75°)
分析上面各式的特点,写出能反映其规律的等式,并给出证明.
3、等差数列{a n}的前n项和为Sn,a1=1+根号2,S3=9+3根号2.设{b n}=Sn/n(n∈N*),求证:数列{b n}中任意不同的三项都不可能成为等比数列.
1、若a1>0,a1≠1,a(n+1)=(2a n)/(1+a n)(n=1,2,…).(1)求证:a(n+1)≠a n;(2)令a1=1/2,写出a2,a3,a4,a5的值,观察并归纳出数列的通项公式;(3)求证:存在不等于零的常数p,使得{(a n+p)/a n}是等比数列,并求出公比q的值.
2、观察下列等式:tan(-45°)+tan(-60°)+tan(-75°)=tan(-45°)tan(-60°)tan(-75°)
分析上面各式的特点,写出能反映其规律的等式,并给出证明.
3、等差数列{a n}的前n项和为Sn,a1=1+根号2,S3=9+3根号2.设{b n}=Sn/n(n∈N*),求证:数列{b n}中任意不同的三项都不可能成为等比数列.
1.
(1)假设a(n+1)=a n,则由已知有an=a(n+1)=(2a n)/(1+a n),(n=1,2,…),即an=0或1,)(n=1,2,…),又因为a1>0,a1≠1,故假设不成立,即a(n+1)≠a n.
(2)由已知得a2=2/3,a3=4/5,a4=8/9,a5=16/17,可观察每个分子加1就等于分母而且分子为平方数,即可归纳an=2^(n-1)/[1+2^(n-1)].
(3)其实由递推公式可以求出an的,由已知可得1/a(n+1)-1=1/2[1/(an)-1],也即数理{1/(an)-1}为首项为1/a1,公比为1/2的等比数列,不适一般性有an=2^(n-1)a1/[1-a1+2^(n-1)a1]
则an+p/an=2^(n-1)a1+(1-a1)p+2^(n-1)a1p/2^(n-1)a1=(1+p)*[1/2^(n-1)a1]+(1-a1)p/2^(n-1)a1要使为等比数列,则有1+p=0或p=0,故存在不为0的常数p=-1使结论成立!
2.
根据观察则有在有意义的情况下有:tanA+tanB+tanC=tanAtanBtanC,且A+B+C=π,
证明有tanA+tanB=tan(A+B)*(1-tanAtanB)
且tanC=-tan(A+B)
则可得tanA+tanB+tanC=tanAtanBtanC
3.
由题意可得a1+a2=2a3,又a1=1+根号2,S3=9+3根号2,则可得an=2n+(根号2)-1
Sn=n*(n+根号2),所以bn=n+根号2
假设bm,bt,br组成等比数列且不等,则有bt^2=bm*br
即(t+根号2)^2=(m+根号2)(r+根号2)
故有:t^2-mr=根号2(m+r-t),又因为t,m,r为正整数,根号2(m+r-t)为无理数
又容易知道左边式子为整数,而右边为无理数
不存在t,m,r使的上式成立,也即不存在任意三个不同项成等比数列!
(1)假设a(n+1)=a n,则由已知有an=a(n+1)=(2a n)/(1+a n),(n=1,2,…),即an=0或1,)(n=1,2,…),又因为a1>0,a1≠1,故假设不成立,即a(n+1)≠a n.
(2)由已知得a2=2/3,a3=4/5,a4=8/9,a5=16/17,可观察每个分子加1就等于分母而且分子为平方数,即可归纳an=2^(n-1)/[1+2^(n-1)].
(3)其实由递推公式可以求出an的,由已知可得1/a(n+1)-1=1/2[1/(an)-1],也即数理{1/(an)-1}为首项为1/a1,公比为1/2的等比数列,不适一般性有an=2^(n-1)a1/[1-a1+2^(n-1)a1]
则an+p/an=2^(n-1)a1+(1-a1)p+2^(n-1)a1p/2^(n-1)a1=(1+p)*[1/2^(n-1)a1]+(1-a1)p/2^(n-1)a1要使为等比数列,则有1+p=0或p=0,故存在不为0的常数p=-1使结论成立!
2.
根据观察则有在有意义的情况下有:tanA+tanB+tanC=tanAtanBtanC,且A+B+C=π,
证明有tanA+tanB=tan(A+B)*(1-tanAtanB)
且tanC=-tan(A+B)
则可得tanA+tanB+tanC=tanAtanBtanC
3.
由题意可得a1+a2=2a3,又a1=1+根号2,S3=9+3根号2,则可得an=2n+(根号2)-1
Sn=n*(n+根号2),所以bn=n+根号2
假设bm,bt,br组成等比数列且不等,则有bt^2=bm*br
即(t+根号2)^2=(m+根号2)(r+根号2)
故有:t^2-mr=根号2(m+r-t),又因为t,m,r为正整数,根号2(m+r-t)为无理数
又容易知道左边式子为整数,而右边为无理数
不存在t,m,r使的上式成立,也即不存在任意三个不同项成等比数列!
数列题求通项a1+2a2+...+nan=n(n+1)(n+2)a1+2a2+..+(n-1)a(n-1)=(n-1)n
证明数列是等比数列数列前n项和为Sn,a1=1,a(n+1)=(n+2)Sn/n,求证Sn/n是等比数列,
已知数列{a小n}满足a小n大于等于0,a1=0,a^2小n+1+a小n+1减1=a^2小n(n属于N),记S小n=a1
数列竞赛题!在线等!数列{an},a1=2/3,a(n+1)=an^2+a(n-1)^2+.+a1^2(n∈N+),若对
在数列an中,a1=2,a(n+1)=4an-3n+1,求证数列a(n)-n是等比数列
数列{an},a1=1,a(n+1)=2an-n^2+3n
已知数列an中,a1=1 2a(n+1)-an=n-2/n(n+1)(n+2) 若bn=an-1/n(n+1)
已知数列{An}满足A1=1,A=3(n-1)+A(n>/2)
已知数列{an}满足a1=1,an=a1 +1/2a2 +1/3a3 … +1/(n-1)a(n-1),(n>1,n∈N
已知数列an中,a1=3/16,an=3/8+a(n-1)^2,其中n>=2,n属于N求证,0
高二必修五数列相关解答题 已知数列{an}满足a n+1 = 2an+1(n∈N*),且a1=1
数列{an} {bn}满足:a1=0 a2=1 a(n+2)=[an+a(n+1)]/2 bn=a(n+1)-an 求证