已知数列{an}满足a(n+1)-2an=0且(a3)+2是a2和a4的等差中项.求{an}通项公式
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 12:26:51
已知数列{an}满足a(n+1)-2an=0且(a3)+2是a2和a4的等差中项.求{an}通项公式
若bn=13+2log(1/2)an,Sn=b1+b2+.+bn,求Sn的最大值
若bn=13+2log(1/2)an,Sn=b1+b2+.+bn,求Sn的最大值
a(n+1)-2an=0
a(n+1)=2an
故{an}是公比为2的等比数列
因(a3)+2是a2和a4的等差中项
an=a1*2^(n-1)
则2(a3)+4=a2+a4
即2(a1*2^2)+4=a1*2+a1*2^3
8a1+4=2a1+8a1
a1=2
∴an=2^n
bn=13+2log(1/2) 2^n=13-2n
显然b6=1>0 b7=-1
a(n+1)=2an
故{an}是公比为2的等比数列
因(a3)+2是a2和a4的等差中项
an=a1*2^(n-1)
则2(a3)+4=a2+a4
即2(a1*2^2)+4=a1*2+a1*2^3
8a1+4=2a1+8a1
a1=2
∴an=2^n
bn=13+2log(1/2) 2^n=13-2n
显然b6=1>0 b7=-1
已知递增的等比数列{an}满足a2+a3+a4=28,且a3+2是a2,a4的等差中项,求数列{an}的通项公式
已知等比数列(an)满足2a1+a3=3a2且a3+2是a2,a4的等差中项 求数列(an)的通项公式?
已知递增的等比数列{an}满足a2+a3+a4+28,且a3+2是a2,a4的等差中项,求数列{an}的通项公式
已知等比数列an中,a1=2,a3+2是a2和a4的等差中项,(1)求数列an的通项公式.
已知递增等比数列{an}满足a2+a3+a4=28,a3+2是a2与a4的等差中项,求{an}的通项公式.
已知递增的等比数列{an}满足a2+a3+a4=28,且a3+2.是a2.a4的等差中项,求{an}的通项公式
已知等比数列an中,a1=2,a3+2是a2和a4的等差中项.求数列an的通项公式.求讲解和
已知数列{an}满足:a1=1,且an-an-1=2n,求(1)a2,a3,a4.(2)求数列{an}的通项an
已知递增数列{an}满足a2a3a4=64,且(a3+1)是a2,a3的等差中项,求数列{an}的通项公式
已知单调递增的等比数列an,a2+a3+a4=28,a3+2是a2和a4的等差中项,求an的通项公式.
己知各项均为正数的数列{an}满足an+12-an+1an-2an2=0(n∈N*),且a3+2是a2,a4的等差中项.
已知等比数列{an}满足2a1+a3=3a2.且a3+2是a2.a4的等差中项.求数列