作业帮 > 数学 > 作业

已知(1-x^2)f"(x)+xf'(x)=x/(x+1)

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/16 11:08:32
已知(1-x^2)f"(x)+xf'(x)=x/(x+1)
已知
1.(1-x^2)f"(x)+xf'(x)=x/(x+1)
在(-1,1)上成立
2.f(x)在(-1,1)上二阶可导
3.f(0)=0
4.f(0.5)=1.5+0.5*(pi/6)^2+pi/6
求f(x)
已知(1-x^2)f
用分部积分配方法:.
(1-x^2)f "(x) + xf '(x) = x/(x+1) 方程两边乘以(1-x^2)^(-3/2)
==> (1-x^2)^(-1/2) f "(x) + x(1-x^2)^(-3/2) f '(x) = x(1-x^2)^(-3/2)/(x+1)
==> [ (1-x^2)^(-1/2) f '(x) ] ' = x(1-x^2)^(-3/2)/(x+1)
==> (1-x^2)^(-1/2) f '(x) = ∫ x(1-x^2)^(-3/2)/(x+1) dx
==> (1-x^2)^(-1/2) f '(x) = ∫ (x-x^2)(1-x^2)^(-5/2) dx
==> (1-x^2)^(-1/2) f '(x) = (1-x^3)(1-x^2)^(-3/2) / 3 + C1
==> f '(x) = (1-x^3)(1-x^2)^(-1) / 3 + C1*(1-x^2)^(1/2)
==> f (x) = ∫ [ (1-x^3)(1-x^2)^(-1) / 3 + C1*(1-x^2)^(1/2) ] dx
==> f (x) = ∫ [ (1+x+x^2)/(3(1+x)) + C1*(1-x^2)^(1/2) ] dx
==> f (x) = x^2/6 + ln(1+x) /3 + C1*[ x(1-x^2)^(1/2)/2 + arcsin(x)/2 ] + C2
==> f (x) = x^2/6 + ln(1+x) /3 + C1*[ x(1-x^2)^(1/2) + arcsin(x) ] + C2 (C1为常数,1/2可去掉)
==> f (x) = x^2 / 6 + ln(1+x) /3 + C1*[ x√(1-x^2) + arcsin(x) ] + C2 (到此步已验证正确)
根据初始条件解得:C2=0,C1=?
f(0.5)给的有点问题,C1的结果很复杂,不再计算.