若λ1,λ2是A的两个不同的特征值,p1,p2分别为对应于λ1,λ2的特征向量.证明:p1+p2不是A的特征向量.
三阶实对称矩阵A特征值0,1,1,p1,p2是A的两不同特征向量,A(p1+p2)=p2,求Ax=p2的通解
设三阶矩阵A的三个特征值为2,-2,1,对应的特征向量依次为P1(011)P2(111)
设三阶矩阵A的三个特征值为2,-2,1,对应的特征向量依次为P1(011)P2(111)P3(110),求A,想看下仔细
设三阶矩阵A的三个特征值为2,-2,1,对应的特征向量依次为P1(011)P2(111)P3(110),求A^5.
已知A是n阶方阵,λ1,λ2是A的两个不同的特征值,X1,X2分别是它们对应的特征向量,证明x1+x2不是A的特征向量
设3阶对称矩阵A的特征值分别是λ1=-53,λ,2=λ3=63,与特征值λ1=53对应的特征向量为P1=(-6,-6,3
已知3阶方阵A的特征值为1,0,-1,对应的特征向量依次为P1=(1,2,2)T,P2=(2,-2,1)T,P3=(-2
λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,求证α1,α2线性无关.
若三阶矩阵A的三个特征值为1,2,-3,属于特征值1的特征向量为p1(1,1,1)^T,2的特征值为p2(1,-1,0)
X1,X2分别为A的对应特征值 λ1,λ2的特征向量,证明X1,X2 线性无关.
若p1,p2是两个大于2的质数,证明p1+p2是一个合数?
设三阶矩阵A的特征值为λ1=2 λ2=-2 λ3=1 对应的特征值向量依次为P1=(0 1 1)P2=(1 1 1)P3