设三阶矩阵A的特征值为λ1=2 λ2=-2 λ3=1 对应的特征值向量依次为P1=(0 1 1)P2=(1 1 1)P3
设三阶矩阵A的特征值为λ1=2 λ2=-2 λ3=1 对应的特征值向量依次为P1=(0 1 1)P2=(1 1 1)P3
设三阶矩阵A的三个特征值为2,-2,1,对应的特征向量依次为P1(011)P2(111)P3(110),求A,想看下仔细
设三阶矩阵A的三个特征值为2,-2,1,对应的特征向量依次为P1(011)P2(111)P3(110),求A^5.
设三阶矩阵A的三个特征值为2,-2,1,对应的特征向量依次为P1(011)P2(111)
已知3阶方阵A的特征值为1,0,-1,对应的特征向量依次为P1=(1,2,2)T,P2=(2,-2,1)T,P3=(-2
设三阶对称矩阵A的特征值为3、6、6,与特征值3对应的特征向量为P1=(1 1 1)T,求矩阵A
知道一个三阶方阵的特征值为1 0 -1和其对应的特征向量p1=(1 2 2) p2=(2 -2 1) p3=(-2 -1
设3阶对称矩阵A的特征值分别是λ1=-53,λ,2=λ3=63,与特征值λ1=53对应的特征向量为P1=(-6,-6,3
三阶实对称矩阵A特征值0,1,1,p1,p2是A的两不同特征向量,A(p1+p2)=p2,求Ax=p2的通解
若三阶矩阵A的三个特征值为1,2,-3,属于特征值1的特征向量为p1(1,1,1)^T,2的特征值为p2(1,-1,0)
λ=2是可逆矩阵A的一个特征值,则A-2A^-1的特征值为
1.设三阶实对称矩阵A的特征值为λ1=1,λ2=-1,λ3=0,对应的λ1、λ2的特征向量依次为α1=(1 2 2)T