Rt△ABC中,∠A=90°,BC=4,有一个内角为60°,点P是直线AB上不同于A,B的一点,且∠ACB=30°,则P
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/20 23:11:44
Rt△ABC中,∠A=90°,BC=4,有一个内角为60°,点P是直线AB上不同于A,B的一点,且∠ACB=30°,则PB长为?3分之4倍根3 3分之8倍根3 4 一共三个答案,但是我不会做.那位会,
这道题的考点是:含30度角的直角三角形;勾股定理.
专题:分类讨论.
分析:分两种情况考虑:当∠ABC=60°时,如图所示,由∠ABC=60°,利用直角三角形的两锐角互余求出∠CAB=30°,又∠PCA=30°,由∠PCA+∠ACB求出∠PCB为60°,可得出三角形PCB为等边三角形,根据等边三角形的三边相等,由BC的长即可求出PB的长;当∠ABC=30°时,再分两种情况:(i)P在A的右边时,如图所示,由∠PCA=30°,∠ACB=60°,根据∠PCA+∠ACB求出∠PCB为直角,由∠ABC=30°及BC的长,利用锐角三角形函数定义及cos30°的值,即可求出PB的长;当P在A的左边时,如图所示,由∠PCA=30°,∠ACB=60°,根据∠ACB-∠ACP求出∠PCB为30°,得到∠PCB=∠ABC,利用等角对等边得到PC=PB,由BC及∠ABC=30°,利用30°所对的直角边等于斜边的一半求出AC的长,再利用勾股定理求出AB的长,由AB-BP表示出AP,在直角三角形ACP中,利用勾股定理列出关于PB的方程,求出方程的解得到PB的长,综上,得到所有满足题意的PB的长.
分两种情况考虑:
当∠ABC=60°时,如图所示:
∵∠CAB=90°,
∴∠BCA=30°,又∠PCA=30°,
∴∠PCB=∠PCA+∠ACB=60°,又∠ABC=60°,
∴△PCB为等边三角形,又BC=4,
∴PB=4;
当∠ABC=30°时,如图所示:
(i)当P在A的左边时,如图所示:
∵∠PCA=30°,∠ACB=60°,
∴∠PCB=90°,
又∠B=30°,BC=4,
∴cosB=BC/PB,即cos30°=4/PB,
解得:PB=4/(√3 / 2)=(8√3)/3;
(ii)当P在A的右边时,如图所示:
∵∠PCA=30°,∠ACB=60°,
∴∠BCP=30°,又∠B=30°,
∴∠BCP=∠B,
∴CP=BP,
在Rt△ABC中,∠B=30°,BC=4,
∴AC=1/2BC=2,
根据勾股定理得:√AB=√(BC²-AC²)=2√3,
∴AP=AB-PB=2√3-PB,
在Rt△APC中,根据勾股定理得:AC²+AP²=CP²=BP²,
∴2²+(2√3-BP)²=BP²,
解得:BP=(4√3)/3,
综上,BP的长分别为4或433或833.
故答案为:4或(4√3)/3或(8√3)/3
点评:此题考查了含30°直角三角形的性质,勾股定理,等边三角形的判定与性质,以及锐角三角函数定义,利用了转化及分类讨论的数学思想,熟练掌握性质及定理是解本题的关键.
专题:分类讨论.
分析:分两种情况考虑:当∠ABC=60°时,如图所示,由∠ABC=60°,利用直角三角形的两锐角互余求出∠CAB=30°,又∠PCA=30°,由∠PCA+∠ACB求出∠PCB为60°,可得出三角形PCB为等边三角形,根据等边三角形的三边相等,由BC的长即可求出PB的长;当∠ABC=30°时,再分两种情况:(i)P在A的右边时,如图所示,由∠PCA=30°,∠ACB=60°,根据∠PCA+∠ACB求出∠PCB为直角,由∠ABC=30°及BC的长,利用锐角三角形函数定义及cos30°的值,即可求出PB的长;当P在A的左边时,如图所示,由∠PCA=30°,∠ACB=60°,根据∠ACB-∠ACP求出∠PCB为30°,得到∠PCB=∠ABC,利用等角对等边得到PC=PB,由BC及∠ABC=30°,利用30°所对的直角边等于斜边的一半求出AC的长,再利用勾股定理求出AB的长,由AB-BP表示出AP,在直角三角形ACP中,利用勾股定理列出关于PB的方程,求出方程的解得到PB的长,综上,得到所有满足题意的PB的长.
分两种情况考虑:
当∠ABC=60°时,如图所示:
∵∠CAB=90°,
∴∠BCA=30°,又∠PCA=30°,
∴∠PCB=∠PCA+∠ACB=60°,又∠ABC=60°,
∴△PCB为等边三角形,又BC=4,
∴PB=4;
当∠ABC=30°时,如图所示:
(i)当P在A的左边时,如图所示:
∵∠PCA=30°,∠ACB=60°,
∴∠PCB=90°,
又∠B=30°,BC=4,
∴cosB=BC/PB,即cos30°=4/PB,
解得:PB=4/(√3 / 2)=(8√3)/3;
(ii)当P在A的右边时,如图所示:
∵∠PCA=30°,∠ACB=60°,
∴∠BCP=30°,又∠B=30°,
∴∠BCP=∠B,
∴CP=BP,
在Rt△ABC中,∠B=30°,BC=4,
∴AC=1/2BC=2,
根据勾股定理得:√AB=√(BC²-AC²)=2√3,
∴AP=AB-PB=2√3-PB,
在Rt△APC中,根据勾股定理得:AC²+AP²=CP²=BP²,
∴2²+(2√3-BP)²=BP²,
解得:BP=(4√3)/3,
综上,BP的长分别为4或433或833.
故答案为:4或(4√3)/3或(8√3)/3
点评:此题考查了含30°直角三角形的性质,勾股定理,等边三角形的判定与性质,以及锐角三角函数定义,利用了转化及分类讨论的数学思想,熟练掌握性质及定理是解本题的关键.
Rt△ABC中,∠A=90°,BC=4,有一个内角为60°,点P是直线AB上不同于A,B的一点,且∠ACP=30°,求P
Rt三角形ABC中,BC=4,有一个内角为60°,点P是直线AB上不同于A,B的一点,且∠ACP=30°,求PB的长
Rt三角形ABC,角A=90度,BC是方程X的平方+X-20=0的一个根 有一个内角为60度 点p是直线AB上不同于A
如图,在Rt△ABC中,∠ACB=90°,过直角边AC上的一点P作直线交AB于点M,交BC延长线于点N,且∠APM=∠A
Rt△ABC中,∠ACB=90°,AC=BC,AB=8,点P是AB上的一个动点,点D在BC边上,且PC=PD,设AP的长
【在线等!】Rt△ABC中,∠ACB=90°,AC=BC,AB=8,点P是AB上的一个动点,点D在BC边上,且PC=PD
如图,已知Rt△ABC,∠ACB=90°,AC=BC=1,点P在斜边AB上移动(点P不与点A、B重合),以点P为顶点作∠
已知Rt△ABC中,∠C=90°,P是BC边所 在直线上的点,且△ABP为等腰三角形,则符合条件的P点有 ( )
8.如图,在Rt△ABC中,∠ACB=90°,AB=2BC,在直线BC或AC上取一点P,使得△PAB为等腰三角形,则符合
【急!在rt△ABC中,∠ACB=90°点O是AB上一点,以OA为半径的⊙O切BC于D,交AC于点E,且AD=B
已知:如图,在Rt△ABC中,∠ACB=90°,点P是边AB上的一个动点,联结CP,过点B作BD⊥CP,垂足为点D.
在Rt△ABC中,∠ACB=90,点P在AC边上,过P点作直线MN交AB于点M,交BC延长线于点N,且∠APM=∠A,求