已知:如图,在Rt△ABC中,∠ACB=90°,点P是边AB上的一个动点,联结CP,过点B作BD⊥CP,垂足为点D.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 11:27:26
已知:如图,在Rt△ABC中,∠ACB=90°,点P是边AB上的一个动点,联结CP,过点B作BD⊥CP,垂足为点D.
(1)如图1,当CP经过△ABC的重心时,求证:△BCD∽△ABC.
(2)如图2,若BC=2厘米,cotA=2,点P从点A向点B运动(不与点A、B重合),点P的速度是厘米/秒.设点P运动的时间为t秒,△BCD的面积为S平方厘米,求出S关于t的函数解析式,并写出它的定义域.
(3)在第(2)小题的条件下,如果△PBC是以CP为腰的等腰三角形,求△BCD的面积.
(1)如图1,当CP经过△ABC的重心时,求证:△BCD∽△ABC.
(2)如图2,若BC=2厘米,cotA=2,点P从点A向点B运动(不与点A、B重合),点P的速度是厘米/秒.设点P运动的时间为t秒,△BCD的面积为S平方厘米,求出S关于t的函数解析式,并写出它的定义域.
(3)在第(2)小题的条件下,如果△PBC是以CP为腰的等腰三角形,求△BCD的面积.
(1)当CP经过△ABC的重心时
CP是AB边上的中线
因为,∠ACB=90°
所以CP=BP=AP
所以∠PCB=∠PBC
因为BD⊥CP,垂足为点D
所以∠BDC=∠ACB=90°
所以:△BCD∽△ABC.
(2)若BC=2厘米,cotA=2,
则AC=4厘米,AB=2根号5厘米
过点D作DE⊥AC,垂足为点E
设点P的速度是1厘米/秒点P运动的时间为t秒
此时AD=t厘米,AE=2t/根号5,DE=t/根号5,CE=4-2t/根号5,CD^2=(t/根号5)^2+(4-2t/根号5)^2
可得:△BCD∽△CDE
△BCD的面积:△CDE面积=(BC/CD)^2
即s=(BC/CD)^2*△CDE面积
而△CDE的面积是1/2*CE*DE=1/2*(4-2t/根号5,)*(t/根号5)
所以s=1/2*(4-2t/根号5,)*(t/根号5)*{4/[(t/根号5)^2+(4-2t/根号5)^2]}
即s=(-4t^2+8根号5t)/(5t^2-16根号5t+80),定义域是(0
CP是AB边上的中线
因为,∠ACB=90°
所以CP=BP=AP
所以∠PCB=∠PBC
因为BD⊥CP,垂足为点D
所以∠BDC=∠ACB=90°
所以:△BCD∽△ABC.
(2)若BC=2厘米,cotA=2,
则AC=4厘米,AB=2根号5厘米
过点D作DE⊥AC,垂足为点E
设点P的速度是1厘米/秒点P运动的时间为t秒
此时AD=t厘米,AE=2t/根号5,DE=t/根号5,CE=4-2t/根号5,CD^2=(t/根号5)^2+(4-2t/根号5)^2
可得:△BCD∽△CDE
△BCD的面积:△CDE面积=(BC/CD)^2
即s=(BC/CD)^2*△CDE面积
而△CDE的面积是1/2*CE*DE=1/2*(4-2t/根号5,)*(t/根号5)
所以s=1/2*(4-2t/根号5,)*(t/根号5)*{4/[(t/根号5)^2+(4-2t/根号5)^2]}
即s=(-4t^2+8根号5t)/(5t^2-16根号5t+80),定义域是(0
已知:如图,在Rt△ABC中,∠ACB=90°,点P是边AB上的一个动点,联结CP,过点B作BD⊥CP,垂足为点D.
如图,在矩形ABCD中,AB=2,AD=3.点P是边AD上一点,联结CP,过点P作PF⊥CP交AB于F,以点C为圆心,C
如图,矩形ABCD中,CH⊥BD,垂足为H,P点是AD上的一个动点(P与A、D不重合),CP与BD交于E点.已知CH=6
如图,在△ABC中,∠ACB=90°,AC=BC,点P在AB上,AD⊥CP于点D,BE⊥CP于点E,BE=6cm.求CD
(2014•奉贤区二模)已知:如图,在Rt△ACB中,∠A=30°,∠B=45°,AC=8,点P在线段AB上,联结CP,
如图,在△ABC中,∠ACB=90°,AC=BC,点P在AB上,AD⊥CP于D,BE⊥CP于E,已知CD=3cm,求BE
如图:矩形ABCD中,CH垂直于BD垂足为H,P点是AD上的一个动点(P与A,D不重合),CP育BD交于点E.已知CH=
Z已知如图CE是RT△ABC的斜边AB上的高,在CE的延长线上任取一点P,连接AP,过点B作BG⊥AP于点G,并交CP于
如图,在等腰Rt△ABC中,∠ACB=90°,D为的BD中点,DE⊥AB,垂足为E,过点B作BF平行AC交DE的延长线于
已知RT△ABC,∠C=90°,AC=BC=6,点P为边AB上的点,CP=2√ 5 ,则点A到直线CP的距离是
在等腰Rt△ABC中,角ACB=90°,D为BD的中点,DE⊥AB,垂足为点E,过点B作BF∥AC交DE的延长线于点F,
已知:如图13,在等腰直角△ABC中,AC =BC,斜边AB的长为4,过点C作射线CP//AB,D为射线CP上一点