作业帮 > 数学 > 作业

怎么证明勾股定理啊?

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 21:49:26
怎么证明勾股定理啊?
怎么证明勾股定理啊?
证法1  作四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c.把它们拼成如图那样的一个多边形,使D、E、F在一条直线上.过点C作AC的延长线交DF于点P.
  ∵ D、E、F在一条直线上,且RtΔGEF ≌ RtΔEBD,
  ∴ ∠EGF = ∠BED,
∵ ∠EGF + ∠GEF = 90°,
  ∴ ∠BED + ∠GEF = 90°,
  ∴ ∠BEG =180°―90°= 90°
  又∵ AB = BE = EG = GA = c,
  ∴ ABEG是一个边长为c的正方形.
  ∴ ∠ABC + ∠CBE = 90°
  ∵ RtΔABC ≌ RtΔEBD,
  ∴ ∠ABC = ∠EBD.
  ∴ ∠EBD + ∠CBE = 90°
  即 ∠CBD= 90°
  又∵ ∠BDE = 90°,∠BCP = 90°,
  BC = BD = a.
  ∴ BDPC是一个边长为a的正方形.
  同理,HPFG是一个边长为b的正方形.
  设多边形GHCBE的面积为S,则
  A2+B2=C2
证法2
  作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c.再做一个边长为c的正方形.把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.
  过点Q作QP∥BC,交AC于点P.
  过点B作BM⊥PQ,垂足为M;再过点
  F作FN⊥PQ,垂足为N.
  ∵ ∠BCA = 90°,QP∥BC,
  ∴ ∠MPC = 90°,
  ∵ BM⊥PQ,
  ∴ ∠BMP = 90°,
  ∴ BCPM是一个矩形,即∠MBC = 90°.
  ∵ ∠QBM + ∠MBA = ∠QBA = 90°,
  ∠ABC + ∠MBA = ∠MBC = 90°,
  ∴ ∠QBM = ∠ABC,
  又∵ ∠BMP = 90°,∠BCA = 90°,BQ = BA = c,
  ∴ RtΔBMQ ≌ RtΔBCA.
  同理可证RtΔQNF ≌ RtΔAEF.即A2+B2=C2
证法3
  作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c.再作一个边长为c的正方形.把它们拼成如图所示的多边形.
  分别以CF,AE为边长做正方形FCJI和AEIG,
  ∵EF=DF-DE=b-a,EI=b,
  ∴FI=a,
  ∴G,I,J在同一直线上,
  ∵CJ=CF=a,CB=CD=c,
  ∠CJB = ∠CFD = 90°,
  ∴RtΔCJB ≌ RtΔCFD ,
  同理,RtΔABG ≌ RtΔADE,
  ∴RtΔCJB ≌ RtΔCFD ≌ RtΔABG ≌ RtΔADE
  ∴∠ABG = ∠BCJ,
  ∵∠BCJ +∠CBJ= 90°,
  ∴∠ABG +∠CBJ= 90°,
  ∵∠ABC= 90°,
  ∴G,B,I,J在同一直线上,
  A2+B2=C2.
证法4
  作三个边长分别为a、b、c的三角形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结
  BF、CD.过C作CL⊥DE,
  交AB于点M,交DE于点L.
  ∵ AF = AC,AB = AD,
  ∠FAB = ∠GAD,
  ∴ ΔFAB ≌ ΔGAD,
  ∵ ΔFAB的面积等于,
  ΔGAD的面积等于矩形ADLM
  的面积的一半,
  ∴ 矩形ADLM的面积 =.
  同理可证,矩形MLEB的面积 =.
  ∵ 正方形ADEB的面积
  = 矩形ADLM的面积 + 矩形MLEB的面积
  ∴ 即A2+B2=C2