设函数f(x)=lg(1-x),g(x)=lg(1+x),在f(x)和g(x)的公共定义域内比较|f(x)|与|g(x)
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 12:28:22
设函数f(x)=lg(1-x),g(x)=lg(1+x),在f(x)和g(x)的公共定义域内比较|f(x)|与|g(x)|的大小.
f(x)、g(x)的公共定义域为(-1,1).
|f(x)|-|g(x)|=|lg(1-x)|-|lg(1+x)|.
(1)当0<x<1时,|lg(1-x)|-|lg(1+x)|=-lg(1-x2)>0;
(2)当x=0时,|lg(1-x)|-|lg(1+x)|=0;
(3)当-1<x<0时,|lg(1-x)|-|lg(1+x)|=lg(1-x2)<0.
综上所述,当0<x<1时,|f(x)|>|g(x)|;当x=0时,|f(x)|=|g(x)|;
当-1<x<0时,|f(x)|<|g(x)|.
|f(x)|-|g(x)|=|lg(1-x)|-|lg(1+x)|.
(1)当0<x<1时,|lg(1-x)|-|lg(1+x)|=-lg(1-x2)>0;
(2)当x=0时,|lg(1-x)|-|lg(1+x)|=0;
(3)当-1<x<0时,|lg(1-x)|-|lg(1+x)|=lg(1-x2)<0.
综上所述,当0<x<1时,|f(x)|>|g(x)|;当x=0时,|f(x)|=|g(x)|;
当-1<x<0时,|f(x)|<|g(x)|.
设函数f(x)=lg(1-x),g(x)=lg(1+x),在f(x)和g(x)的公共定义域内比较|f(x)|与|g(x)
f(x)=lg(1-x),g(x)=lg(1+x),试在f(x)和g(x)的公共定义域内比较|f(x)|与|g(x)|的
3道高一对数函数题.1.设函数f(x)=lg(1-x),g(x)=lg(1=x),请在f(x)与g(x)的公共定义域内比
已知函数f(x)=1/2lg(kx),g(x)=lg(x+1).
分别求函数f(x)=lg(x^2-3x+2),g(x)=lg(x-1)+lg(x-2)的定义域
已知函数f(x)=lg(x+1),g(x)=lg(2x+t)(t为参数),
已知函数f(x)=lg(x+1),g(x)=2lg(2x+t)(t为参数)
已知定义在R上的任意函数f(x)=lg(10x+1),x∈R,可以表示成一个奇函数g(x)与偶函数h(x)的和,求g(x
已知函数f(x)=lg(1+x)+lg(1-x),若f(x)=lgg(x),判断函数g(x)在(0,1)内的单调性用定义
已知函数f(x)=lg(2+x),g(x)=lg(2-x),设h(x)=f(x)+g(x) 求函数h(x)的定义域
设函数f(X)定义在(0,+∞)上,f(1)=0,导数f'(x)=1/x,g(x)=f(x)+f'(x) .
设X∈(-1,1),f(x)是奇函数,g(x)是偶函数,f(x)+g(x)=2X-lg(1+x),求f(x)的表达式.