关于向量的证明题.设向量组α1、α2、α3、α4、α5线性无关β1=α1+α2 β2=α2+α3 β3=α3+α1 β4
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 14:58:13
关于向量的证明题.
设向量组α1、α2、α3、α4、α5线性无关
β1=α1+α2 β2=α2+α3 β3=α3+α1 β4=α4+α5 β5=α5+α1
证明β1、β2、β3、β4、β5线性无关
设向量组α1、α2、α3、α4、α5线性无关
β1=α1+α2 β2=α2+α3 β3=α3+α1 β4=α4+α5 β5=α5+α1
证明β1、β2、β3、β4、β5线性无关
设A=(α1、α2、α3、α4、α5)
B=(β1,β2,β3,β4,β5)
β1=α1+α2 β2=α2+α3 β3=α3+α4 β4=α4+α5 β5=α5+α1
则B=AK
K=
〔1 0 0 0 1
1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1〕
因为|K|不等于0
所以R(B)=R(A)
因为α1、α2、α3、α4、α5线性无关
所以R(A)=5,从而R(B)=5
从而β1、β2、β3、β4、β5线性无关
B=(β1,β2,β3,β4,β5)
β1=α1+α2 β2=α2+α3 β3=α3+α4 β4=α4+α5 β5=α5+α1
则B=AK
K=
〔1 0 0 0 1
1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1〕
因为|K|不等于0
所以R(B)=R(A)
因为α1、α2、α3、α4、α5线性无关
所以R(A)=5,从而R(B)=5
从而β1、β2、β3、β4、β5线性无关
线性相关性的证明题!设向量组α1,α2,α3线性无关,向量β≠0满足(αi,β)=0,i=1,2,3,判断向量组α1,α
设向量组α1,α2,α3线性无关,证明:向量组α1+α3,α2+α3,α3也线性无关.
设向量组α1,α2,α3线性相关,α2,α3,α4线性无关,证明向量α1必可表示为α2,α3,α4的线性组合
设向量组α1,α2,α3线性无关,证明α1,α1+α2,α1+α2+α3也线性无关
线性代数 设α1,α2,α3 线性无关 问以下向量组是否线性无关?
线性代数:证明向量组β,β+α1,β+α2,...β+αr线性无关
线性代数向量证明题设α1,α2,α3,α4线性相关,但其中任意三个向量都线性无关,证明:必存在一组全不为零的数k1,k2
求一道线性代数的题.设向量组α1,α2,.αn线性无关,讨论向量组β1,β2...βn的线性相关性
向量组α1,α2,α3,α4线性无关,α1,α2,α3,α5线性相关,试证明向量组α1,α2,α3,α4-α5线性无关
设向量组α,β,γ线性无关,证明向量组α,α+β,α+β+γ也线性无关
设数域F上向量空间V的向量组{α1 ,α2 ,α3}线性无关,向量β1可由α1 ,α2 ,α
设向量组α1,α2,…,αn线性无关,向量组β,α1,α2,…,αn线性相关β,α1,α2,…,αn证明有且仅有一个向量