高数不定积分∫(cosx)^8dx求详解,是(cosx)^8而不是cos(x^8)
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 15:11:57
高数不定积分∫(cosx)^8dx求详解,是(cosx)^8而不是cos(x^8)
(cosx)^8 =[( cosx)^2]^4 = (1/16) (1 + cos2x)^4 = (1/16) [ (1 + cos2x)^2 ]^2
= (1/16) [ 1 + 2 cos2x +( cos2x)^2 ]^2 = (1/4) [ 3/2 + 2 cos2x + (1/2)cos4x ]^2
= (1/16) [ 9/4 + 4 (cos2x)^2 + (1/4) ( cos4x)^2 + 6 cos2x +(3/2) cos4x + 2 cos2x cos4x ]
= (1/16)【9/4 + 2 + 2 cos4x + 1/8 + (1/8) cos8x + 6cos2x +(3/2) cos4x + cos6x + cos2x 】
= 35/128 + (7/16)cos2x + (7/32)cos4x + (1/16)cos6x + (1/128)cos8x
原式= 35 x /128 + (7/32)sin2x +(7/128)sin4x + (1/96)sin6x + (1/1024)sin8x + C
= (1/16) [ 1 + 2 cos2x +( cos2x)^2 ]^2 = (1/4) [ 3/2 + 2 cos2x + (1/2)cos4x ]^2
= (1/16) [ 9/4 + 4 (cos2x)^2 + (1/4) ( cos4x)^2 + 6 cos2x +(3/2) cos4x + 2 cos2x cos4x ]
= (1/16)【9/4 + 2 + 2 cos4x + 1/8 + (1/8) cos8x + 6cos2x +(3/2) cos4x + cos6x + cos2x 】
= 35/128 + (7/16)cos2x + (7/32)cos4x + (1/16)cos6x + (1/128)cos8x
原式= 35 x /128 + (7/32)sin2x +(7/128)sin4x + (1/96)sin6x + (1/1024)sin8x + C
求不定积分:∫ cosx/(sinx+cosx) dx
高数求救!求高数帝!求不定积分∫e∧x dx(1+sinx)/(1+cosx)
一道高数不定积分∫e∧x(1+sinx)/(1+cosx)dx
高数的不定积分,sinx*cosx dx/(cosx+sinx)怎么求,原函数!
高数 不定积分 求∫(1+cosx) / (1+sinx^2) dx =?
高数,求不定积分.∫cotx/(sinx+cosx+1)dx
求不定积分x/(1+cosx)dx,
求不定积分∫sin(2x)/(1+cosx)dx
求不定积分:∫(sin²7x/(tanx + cosx) dx,
求不定积分 ∫x/(1+cosx)dx
求下列不定积分:∫(e^2x-cosx/3)dx
求不定积分∫x.sinx^2.cosx^2dx