数列(An)的前n项的和为Sn,且A1=1,A(n+1)=(1/3)Sn,n=1、2、3、……求:
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 19:11:06
数列(An)的前n项的和为Sn,且A1=1,A(n+1)=(1/3)Sn,n=1、2、3、……求:
⑴(An)的通项公式
⑵A2+A4+A6+……+A(2n)的值
⑴(An)的通项公式
⑵A2+A4+A6+……+A(2n)的值
a(n)=s(n)-s(n-1)=3a(n+1)-3a(n) (n>=2)
所以4a(n)=3a(n+1)
所以a(n+1)=4/3*a(n)
所以a(n)为公比为4/3的等比数列(n>=2)
所以a(n)=1 (n=1)
a(n)=(4/3)^(n-2)*1/3 (n>=2)
a2+a4+...+a2n
=1/3+1/3*(4/3)^2+1/3*(4/3)^4+ ...+1/3*(4/3)^(2n-2)
=1/3*((16/9)^0+(16/9)^1+(16/9)^2+...+(16/9)^(n-1))
=1/3*(1-(16/9)^n)/(1-16/9)=3/7*((16/9)^n-1)
所以4a(n)=3a(n+1)
所以a(n+1)=4/3*a(n)
所以a(n)为公比为4/3的等比数列(n>=2)
所以a(n)=1 (n=1)
a(n)=(4/3)^(n-2)*1/3 (n>=2)
a2+a4+...+a2n
=1/3+1/3*(4/3)^2+1/3*(4/3)^4+ ...+1/3*(4/3)^(2n-2)
=1/3*((16/9)^0+(16/9)^1+(16/9)^2+...+(16/9)^(n-1))
=1/3*(1-(16/9)^n)/(1-16/9)=3/7*((16/9)^n-1)
已知数列{an}的首项是a1=1,前n项和为Sn,且Sn+1=2Sn+3n+1(n∈N*).
已知数列{an}的前n项和为Sn,且a1+2a2+3a3+…+nan=(n-1)Sn+2n(n∈N*),求数列{an}通
已知数列{an}的首项a1=3,前n项和为Sn,且S(n+1)=3Sn+2n(n∈N)
已知数列an的首项a1=5,前n项和为Sn,且S(n+1)=2Sn+n+5(n∈N*),求数列{an}的前n项和Sn,设
已知数列{an}a1=2前n项和为Sn 且满足Sn Sn-1=3an 求数列{an}的通项公式an
数列{an}的前n项和为Sn,已知A1=a,An+1=Sn+3^n(三的n次方),n∈N*
高中数列 已知数列{an}的首项a1=1 前n项和为Sn 且S(n+1)=2Sn+3n+1
已知数列{an}的首项a1=5,前n项和为Sn,且Sn+1=2Sn+n+5(n∈N*).
已知数列{an}的首项a1=5,前n项和为Sn,且Sn+1=2Sn+n+5(n∈N*)
数列an的前n项和为Sn,a1=1且3a(n+1)+2Sn=3求an的通向公式
设数列(an)的首项a1=1,前n项和为Sn ,且Sn+1=2n平方+3n+1 n属于N ,求数列的通项公式an
数列an的前n项和为Sn,且a1=1,a(n+1)=1/3Sn,n=1,2,3,…,求 (1)a2,a3,a4,的值及数